1) graded Morita Context
分次Morita Context
1.
LetM={A=■_(g∈G)A_g,V=■_(g∈G)V_g,W=■_(g∈G)W_g,B=■_(g∈G)B_g} and(,),[,]be a G-graded Morita Context with(V,W)=A and[W,V]=B,where A and B are graded ring with 1.
设M={A=⊕_(g∈G)A_g,V=⊕_(g∈G)V_g,W=⊕_(g∈G)W_g,B=⊕_(g∈G)B_g}与(,),[,]是一个G-分次Morita Context,且满足(V,W)=A,[W,V]=B,A,B都有单位元。
2) Morita Context ring
Morita Context环
1.
Let(A,B,V,W,ψ,■)be a Morita Context with a pair of zero homomorphisms and C= ■the corresponding Morita Context ring.
设(A,B,V,W,ψ,φ)是一个Morita Context,具有一对零态射ψ=0,φ=0,C= (A V W B)是对应的Morita Context环。
2.
Let(A,B,V,W,ψ,φ)be a Morita Context with a pair of zero homomor- phisms and C =(A V W B)the corresponding Morita Context ring.
设(A,B,V,W,ψ,φ)是一个Morita Context,具有一对零态射()=0,[]=0,C= (A V W B)是对应的Morita Context环。
3.
Morita Context theory is an efficient method of studying associative rings and algebras (see[l, 4, 5] et) In this paper, we give the necessary and sufficient condition for a Morita Context ring belongs to normal prime class &.
本文首先给出Morita Context环属于正规质类的充要条件。
3) Morita contextfunctor
Morita context函子
4) graded Morita duality
分次Morita对偶
5) graded Morita theory
分次Morita理论
6) context model
Context模型
1.
A 2-D compression of ECG signals is proposed based on context models.
提出一种基于Context模型的ECG信号二维压缩方案。
补充资料:分次
1.分定等次或位次。 2.指分为几次。 3.星辰运行的度次。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条