1) ∈-family of operators
∈-算子族
1.
In this paper,we studied the Littlewood-Paley g operator which is defined by the ∈-family of operators of Homogeneous type space.
主要考虑了齐型空间上由∈-算子族定义的Littlewood-Paleyg算子,通过函数分解等方法证明了g算子在齐型广义Campanato空间上的有界性。
3) family operators
ε算子族
4) family of implication operator
蕴涵算子族
1.
The new family T(q,p)-LGN of left-continuous t-norms and its residua family R(q,p)-LGN of implication operators,which include Lukasiewicz implication operator,Godel implication operator and R0 implication operator,are presented,and the method of fuzzy reasoning based on family of implication operators is proposed,and FMP model Triple Ⅰ sustaining method based on R(q,p)-LGN is given.
给出了一族新的左连续三角模族T(q,p)-LGN族及其伴随蕴涵算子族R(q,p)-LGN,它包括Lukasiewicz蕴涵算子、Gdel蕴涵算子及R0蕴涵算子;提出了基于蕴涵算子族的模糊推理的思想,并给出了基于蕴涵算子族R(q,p)-LGN的FMP模型的三Ⅰ支持算法。
5) fundamental operator family
基本算子族
1.
Using the fundamental operator family theory,they give some equivalent conditions for robust stability with respect to small delays for the kind of delay equations.
作者首先引入基本算子族的概念,然后应用它得到了几个小时滞鲁棒稳定性的等价条件。
6) Resolvent operator family
预解算子族
1.
Let k∈C(R +), A be a closed linear densely defined operator in the Banach space X and {R(t)} t≥0 be an exponentially bounded k-regularized resolvent operator family generated by A.
设 k∈ C( R+ ) ,A是 Banach空间 X中的闭稠定线性算子 ,且 A生成一个指数有界的 k -正则预解算子族 R( t) 。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条