说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正则预解算子族
1)  C-regularized resolvent operator family
正则预解算子族
2)  k-regularized resolvent operator family
k-正则预解算子族
3)  C-Regularized resolvent families
C-正则预解算子族
1.
In this paper ,some basic properties of C-regularized resolvent families have been studiedincluding Additional Perturbations, Pseu- C1-resolvent , Convergence and Approximation of C-Regularized resolvent families.
本文主要研究了C-正则预解算子族的一些基本性质,包括C-正则预解算子族的加法扰动,伪C1预解式以及收敛与逼近等性质等。
4)  Resolvent operator family
预解算子族
1.
Let k∈C(R +), A be a closed linear densely defined operator in the Banach space X and {R(t)} t≥0 be an exponentially bounded k-regularized resolvent operator family generated by A.
设 k∈ C( R+ ) ,A是 Banach空间 X中的闭稠定线性算子 ,且 A生成一个指数有界的 k -正则预解算子族 R( t) 。
5)  C-regularized resolvent family
C-正则预解族
6)  resolvent positive operator
预解正算子
1.
In an ordered Banach space,a generation theorem,about increasing integrated semigroups of strong-contractions,is obtained in terms of resolvent positive operators and dissipative operators.
在序Banach空间中,用耗散算子和预解正算子刻画增加积分算子半群;给出了增加的强压缩积分算子半群的生成定理,发展了近期关于增加积分算子半群的相关结果。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条