1) C-regularized resolvent operator family
正则预解算子族
2) k-regularized resolvent operator family
k-正则预解算子族
3) C-Regularized resolvent families
C-正则预解算子族
1.
In this paper ,some basic properties of C-regularized resolvent families have been studiedincluding Additional Perturbations, Pseu- C1-resolvent , Convergence and Approximation of C-Regularized resolvent families.
本文主要研究了C-正则预解算子族的一些基本性质,包括C-正则预解算子族的加法扰动,伪C1预解式以及收敛与逼近等性质等。
4) Resolvent operator family
预解算子族
1.
Let k∈C(R +), A be a closed linear densely defined operator in the Banach space X and {R(t)} t≥0 be an exponentially bounded k-regularized resolvent operator family generated by A.
设 k∈ C( R+ ) ,A是 Banach空间 X中的闭稠定线性算子 ,且 A生成一个指数有界的 k -正则预解算子族 R( t) 。
5) C-regularized resolvent family
C-正则预解族
6) resolvent positive operator
预解正算子
1.
In an ordered Banach space,a generation theorem,about increasing integrated semigroups of strong-contractions,is obtained in terms of resolvent positive operators and dissipative operators.
在序Banach空间中,用耗散算子和预解正算子刻画增加积分算子半群;给出了增加的强压缩积分算子半群的生成定理,发展了近期关于增加积分算子半群的相关结果。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条