1) finite difference
有限差分逼近
1.
Mathematics Stencil of the finite difference method for the parabolic equation and its new type iterative schemes;
热传导方程有限差分逼近的数学Stencil及其新型迭代格式
2) implicit finite difference approximation
隐式有限差分逼近
3) difference approximation
差分逼近
1.
By using the Tadmor s convergence criteria for the difference approximation of the hyperbolic conservative equation and introducing some adjusting parameter in the nonvanishing viscosity, some convergence properties are obtained.
应用Tadmor的关于双曲型守恒方程式差分逼近的收敛性判别法 ,对于若干差分逼近式 ,引入一些参数 ,只要在上机时适当调整此参数值 ,即可得到其收敛性 。
4) finite elements approximation
有限元逼近
1.
The semi discrete and full discrete finite elements approximation of penalty nonlinear Galerkin method for 2 D transient incompressible N S equation is developed.
本文针对二维非定常不可压缩流体NavierStokes方程的初边值问题,在有限元情形下,研究了加罚形式的非线性Galekin方法半离散和全离散有限元逼近格式,得到了相应的误差估计,并给出了数值算例。
5) finite element approximation
有限元逼近
1.
Based on a new variational inequality equation for the option pricing problems, both semidiscrete and fully discretized finite element approximation schemes are established.
本文首先通过变量变换将原问题化简并转化为等价的变分不等式方程,然后建立半离散和全离散有限元逼
2.
Both semidiscrete and fully discretized finite element approximation schemes are established for the variational inequality equations derived from the option pricing problems.
通过将问题转化为等价的变分不等式方程,分别建立了半离散和全离散有限元逼近格式,并给出了有限元解的收敛性和稳定性分析。
6) finite Dimensional approximation
有限维逼近
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条