1) acyclic mapping
零调映射
2) Acyclic set-valued mapping
零调集值映射
3) acyclic map
零调映象
1.
In this paper,by applying a fixed point theorem of acyclic map,some new fixed point theorems in the product space of topological vector spaces are obtained.
利用零调映象的一个不动点定理,在乘积拓扑矢量空间内得到了某些新的不动点定理,作为应用,在乘积拓扑矢量空间内,对一类广义矢量平衡问题组证明了一些平衡存在性定理,这些定理推广了近期文献中的一些重要的已知结果。
4) non-zero degree
非零映射度
5) harmonic mapping
调和映射
1.
For the shortcomings of geometry based initial solution methods for inverse analysis method in sheet stamping,a 3D mesh harmonic mapping algorithm based on energy theory is implemented.
NUMISHEET 2002一标准考题中,通过与增量模拟软件eta/DYNAFORM的比较,证明了采用基于弹簧系统能量理论的调和映射思想来求解反向模拟法初始域具有较好的适用性,同时验证了反向模拟法较为可靠的计算结果及较高的计算效率。
2.
A novel method of quadrilateral partition on cloudy manifold triangular meshes is presented,which is based on algorithms of mesh simplification and harmonic mapping.
针对海量流形三角网格数据,提出了基于网格简化技术与调和映射算法的四边形网格生成新方法——映射法。
6) Harmonic maps
调和映射
1.
Teichmüller mappings and harmonic maps;
Teichmüller映射与调和映射(英文)
2.
Construction of harmonic maps from R~(1,1) to classical semisimple Lie groups.;
从R~(1,1)到经典单李群的调和映射的具体构造
3.
This paper introduces a novel constrained texture mapping method based on harmonic maps.
传统的约束纹理映射方法大都建立在迭代优化的基础上,给出的解多为近似解·为此,提出了一种基于调和映射的约束纹理映射方法,利用该方法可以得到约束纹理映射问题的一个形式化精确解·由于调和映射具有保持映射能量最小的良好性质,因此该方法能够最小化纹理映射的形变;另外,约束的纹理映射是个大交互量的工作,对映射效果的优化调整非常重要,提出的自适应局部邻域调整方法能够实现映射效果的实时优化·该方法鲁棒并且效率高,实验结果表明利用该方法能够取得良好的绘制效果
补充资料:零维映射
零维映射
zero-dimensional mapping
零维映射【zem~击met‘咖险1 tr.PI,粗;。y~ep皿oe oTo-6P睬eH一e」 一个连续映射(continuous Inapp毗)f:X~Y(其中x与Y是拓扑空间),使得对任何y〔Y,厂’(y)是(在ind意义下)零维集.零维映射及与之紧密相关映射的应用,把对给定空间的研究化为对另一个更简单空间的研究.因此,许多维数性质及其他基数不变量(见基数特征(eardinale玩让aeterisric)),就从x转到Y(或更常见的从Y转到x), 例1.任何度量空间X(d如x簇n),能经过一个完全零维映射(c omPlete zero一dln℃nsional Inapp吨),映人具有可数基的空间Y(d由IY蕊n)(KaTeToB定理(Katetov theo~)).这里,完全零维指的是对任意“>o及任意y‘f(X),存在一个邻域U,C=y,它的原象f一’(U,)分裂成为X中直径<。的离散开集系. 例2.若零维映射f:X~Y(X是正规局部连通空间)是完满映射(perfectrr以PPing),则X的权与Y的权相同(见拓扑空间的权(weight of a topo」o乡calsPaee).晰注,研究臀维瞥置鑫谕,则,‘)咖芜对闭连续映射,它可以扩张到可分度量空间,但对开茬统脾射则不行;见fAll91页.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条