1) linearly stratifiable space
线性层空间
1.
By using neighborhood assignment, we prove that the linearly stratifiable space is monotonically normal, and give a new characterization of linearly stratifiable spaces in terms of monotonic normality.
本文利用邻域约定证明了线性层空间是单调正规的,并且从单调正规的角度得到了线性层空间的一个刻画。
2) linear space
线性空间
1.
Analysis of the real image and the ideal image of plant artistic conception in linear space;
解读线性空间中植物意境审美的“实”像与“虚”像
2.
Properties of s-orlicz convex functions in linear spaces;
线性空间中s-orlicz拟凸函数的性质
3.
Transferable conditions from metric linear space to F-normed and seminormed linear spaces;
距离线性空间成为赋准范、赋拟范线性空间的条件
3) linear spaces
线性空间
1.
PSU(3,q~2)and the automorphism groups of linear spaces.;
PSU(3,q~2)和线性空间自同构群
2.
How can themlinearly independent vectors group in n dimensions linear spaces V be extended to the basis of linear spaces,the concrete and valid methods are not given in the higher algebra and linear algebra textbooks.
m个n维(m
3.
Respectively based on the theory of matrix algebras, linear spaces, linear transformations and λ-matrices, we give five methods to solve typical exercise in "Linear Algebra" .
分别借助矩阵代数、线性空间、线性变换和λ-矩阵等四套相关理论用五种方法解答"高等代数"课程中的一个典型习题。
4) ordered linear spaces
序线性空间
1.
In ordered linear spaces,generalized vector Fritz-John saddle point and generalized vector Kuhn-Tucker saddle point of set-valued optimization problems with generalized inequality constraints were defined,and the relations between them were established.
在序线性空间中定义了带广义不等式约束集值优化问题的广义向量Fritz-John鞍点和广义向量Kuhn-Tucker鞍点,建立了二者之间关系。
2.
The(u,02;Y+)-generalized subconvexlike set-valued maps are introduced,and the alternative theorem of the maps is established in ordered linear spaces.
在序线性空间中,引入(u,02;Y+)—广义次似凸集值映射,建立了此映射下的一个择一定理。
5) superlinearspace
超线性空间
1.
The concepts of superlinearspace and homogeneous basis are given in this paper.
线性空间的Z2阶化结构,也即超线性空间。
6) real linear spaces
实线性空间
1.
Then, a theorem of the alternative for generalized subconvexlike set valued maps in real linear spaces is established.
李泽民建立了实线性空间中次似凸集值映射向量最优化问题的K T条件和Lagrange乘子定理。
2.
In the framework of real linear spaces,we introduce three kinds of Henig proper efficient points.
在实线性空间的框架下,我们引进了三种类型的Henig真有效点。
补充资料:Banach空间中的线性微分方程
Banach空间中的线性微分方程
inear differential equation in a Banach space
E泊皿ch空间中的线性微分方程f肠ear由fl陇rell丘al闰娜-d佣加a Bal.eh sPace;月”He旅”oe月“中中ePe“”“a月buoeyP。。e。。e B 6a“ax0BOM“PocTpa妞cT.e] 形如 A。(t)应=Al(t)u+口(t)(l)的方程,其中对每个t,A。(t)和A,(t)是B山.山空间(Banach sPace)E中的线性算子,而g(t)是给定的函数,。(t)是未知函数,它们都取值于尽导数二理解成差商关于E的模的极限.1.具有有界算子的线性微分方程.假定对每个t,A。(t)和A,(t)是作用于E的有界算子.若对每个t,A。(t)具有有界逆,则(l)可以解出导数,且取形式 应=A(t)u+f(t),(2)其中A(t)是E中的有界算子,f(t)和u(t)是取值于E的函数.若函数A(t)和f(t)是连续的(或更一般地,在每个有限区间上是可测的和可积的),则对任意u。任E,Ca.叻y问题(Cauclly prob】em) 云=通(艺)u、u(s)=“。(3)的解存在,且由公式 “(r)一U(£,5)u。给出,其中 U(:,£)一‘+丁A(:1)d:1+ ·,氰!)…i·‘!·,…“!1,以!一“!·(‘’为方程云二A(t)u的发展算子(evolution operator)·方程(2)的Cauchy问题的解由公式 u“)一U(‘,、)u。+丁U(‘,:),(:)d:确定.由(4)得到估计 ,,U(。,、),,‘exp{丁,,A(:)‘,d:};(,)它的加细是 ,,U(£,;),,‘exn{丁:月(:)d;},(,‘)其中;,(T)是算子A(动的谱半径(s pec喇ra-dius).发展算子具有性质 U(s,s)=I,U(t,:)U(:,s)二U(t,s), U(t,T)“〔U(:,t)1一’. 在(2)的研究中已把主要力量集中在它的解在无穷远处的性态,这依赖于A(t)和f(约的性态.该方程的一个重要特征是一般指数(罗朋ral exPon巴nt)(或奇异指数(singilar exponent)) 、一而生h}u(:+:.、)ll. t .5一田T对于周期和概周期系数的方程已有详细研究(见R川a比空间中微分方程的定性理论(qua腼tive theoryofd迁rer巴币目闪班石。ns inE匕nach sPaces)). 方程(2)也可在复平面上来考虑.若函数A(t)和f(t)在一含点:的单连通区域中是全纯的,则在把积分看成是在连接s和t的可求长的弧上的积分时,公式(3),(4),(5),(5’)仍成立. 另外有些方程出现在最初的线性方程不能解出导数的情形.如果除去一点,譬如t=O,算子A。(t)是处处有界可逆的,则在空间E中该方程就化为形式 a(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条