1) thin-layer interference
薄层干涉
1.
In thin-layer development zone, either the common stack velocity analysis or residual velocity evaluation in prestack time migration processing should consider the influence of thin-layer interference response on velocity.
在薄层发育区,无论是常规叠加速度分析,还是叠前时间偏移处理中的剩余速度估算,均应考虑薄层干涉响应对速度的影响。
2) thin-film interference
薄膜干涉
1.
The optical principles of thin-film interference and diffraction are discussed in detail for analysing two optical models including thin-film interference and grating diffraction.
从光学原理上详细探讨了光的干涉和衍射的形成条件,对比了光在不同晕彩宝石内产生干涉或衍射的理论条件与其实际情况,分析了宝石晕彩效应产生的两种光学模型:薄膜干涉式晕彩不仅要求宝石内部结构层的厚度必须在一定的纳米范围内,而且要求结构层由两相组分出溶而成,即其化学成分、折射率和结构层厚度形成三位一体;而光栅式衍射晕彩则仅要求结构层排列规则、边缘狭窄,能使入射光的振幅或位相或两者同时产生周期性空间调制即可。
2.
Furthermore, the half-wave loss exsisted in thin-film interference was explained with the Fresnel s formula.
从菲涅耳公式出发解释了“薄膜干涉”中的半波损失问题。
3.
Iridescence is frequently used to describe any diffraction and/or thin-film interference-related color phenomena.
晕彩效应是一种特殊的光学现象,指光波因衍射或薄膜干涉作用而产生的颜色现象。
3) interference of thin film
薄膜干涉
1.
The problems about half wave loss and the distinction between half wave loss and the extra optical path difference in interference of thin film is studied with Fresnel,sformula ;some mistakes in solving this kind of problems were correcte
本文通过对菲涅耳公式的深入分析 ,得出了半波损失正确概念及反射时是否发生半波损失的基本分析方法 ,并指出了半波损失与薄膜干涉中的额外程差的区别 ,纠正了一些文献中常见的错误认识并得到了一些重要结论。
4) thin film interference
薄膜干涉
1.
When mediun index of reflection of transparent thin film is different,it can be used as addition to the discussion on additional path difference in the course of “Optics”;and some amendments to the conditions of thin film interference and the expression of its results are submitted.
从薄膜干涉现象及半波损失概念出发 ,分析讨论透明薄膜所处介质折射率不同时 ,反射光因半波损失所引起的额外程差的计算方法 ,作为《光学教程》中讨论额外程差的补充 ,并就讨论薄膜干涉的条件及其结果的表达式提出修改意
2.
This thesis expands the course of increasing transparence of the film increasing transparence in the thin film interference, points out students′error knowledge of soap bubbl thicknes by ignoring half-wave loss when they sort out their knowledge and analyses the cause of their making such mistakes, which should be paid attention to while teachers are doing their teaching.
阐述了薄膜干涉中增透膜的增透过程,指出了学生在知识整理中因忽视半波损失而对皂液薄膜厚度产生的错误认识,分析了学生容易出现错误的原因,以引起教学中重视。
5) film interference
薄膜干涉
1.
Application of toy laser to film interference and Brownian motion experiments;
玩具激光器在薄膜干涉和布朗运动实验中的巧用
2.
Verification experiment for the exception of half-wave loss in the film interference;
薄膜干涉中半波损失的“例外”的实验验证
补充资料:干涉沉降速度差分层学说
干涉沉降速度差分层学说
doctrine of stratification on the basis of density difference in hindered settling rate
ganshe ehenjiang sudueha feneeng xueshuo干涉沉降速度差分层学说(doetrine of Strat-ifieation on the basis of differenee in hinderedsettling rate)美国人蒙罗(H.5.Monroe)为了解释跳汰选矿能够分选宽级别物料的事实,在1888年提出的一种动力分层学说,又称蒙罗分层学说,属于垂向分层理论。该学说认为粒群在有限空间内的沉降分层是按照各个颗粒的干涉沉降速度的大小自下而上排列的。蒙罗将颗粒的干涉沉降比作在窄管中降落。他取直径为d的颗粒,在直径为D的窄管中进行试验,得到干涉沉降速度公hs的计算式为 vhs一v。(1一几o·5)(1)式中v。为按牛顿公式计算的颗粒自由沉降末速;入为粒群的容积浓度,在此d/D一寻了。进入同一层次的不同密度颗粒可认为干涉沉降速度相等,即v、l一姗:,由此蒙罗得到干涉沉降等降比eks的计算式为 又,a,一刀11一又罕·5、2 ehs一寸.~不~-今{了一下几J.(2) 一稍d:占1一尸(i一又旦·“)式中al、a:分别为轻、重矿物的密度;p为介质密度。况一p/占,一p即是按牛顿公式计的自由沉降等降比。。由于在同一层次中轻矿物粒度dl总是大于重矿物粒度d:,故局部轻矿物的容积浓度久1也总要大于重矿物的容积浓度又2。结果由上式可见。hs>e。。当颗粒为球形,重矿物细颗粒充填在轻矿物粗颗粒间隙中,接近自然堆积状态时,蒙罗计算出最大的干涉沉降等降比。、一7.8e。,并以此解释了当粒群浓度增大后,在垂向介质流中可以分选宽级别原料的事实。 (不J‘玉波)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条