1) determinant inequality
行列式不等式
1.
In the study of the functions of several complex variables,Hua Loo-Keng discovered and proved the following determinant inequality: If A,B are n×n complex matrices and I-AAH and I-BBH are Hermitian positive definite matrices,then det(I-AAH)det(I-BBH)≤|det(I-ABH)|2.
在多复变分析的研究中,华罗庚发现并证明了行列式不等式det(I-AAH)det(I-BBH)≤|det(I-ABH)|2,其中n×n复矩阵A,B满足I-AAH,I-BBH都是Hermitian正定矩阵。
2.
We extend the determinant inequality of generalized real positive definite matrices that is advanced by (paper[3]).
推广了文献[3]中的广义实正定矩阵的行列式不等式,同时给出了广义实正定矩阵的凸性不等式。
3.
By using the implements of the more precise determinant inequality of two Hermitian positive definite matrices, and by the result of the relationship among the determinants described by the quardratic inequality, we obtain a new upper bound of the sum of two complex matrices.
利用得到的相关一元二次不等式描述的行列式之间的关系,给出了两个复矩阵和的行列式新上界,作为应用可改进华罗庚行列式不等式的上界。
2) Hua Loo-keng's determinant inequality
华罗庚行列式不等式
3) determinantal differential
行列式等数
4) Mina's determinant identity
Mina行列式恒等式
5) invariant determinant
不变行列式
1.
The invariant determinants ha Banach algebras are discussed and a necessary and sufficient condition for those integral traced unital Barach algebra(A,τ) admitting a G-invari- ant determinant is obtained,where G is a group of trace preserving automorphisms of A.
研究了 Banach 代数中的不变行列式问题。
6) remainder error sequence inequation
新息序列不等式
补充资料:Korn不等式
Korn不等式
Korn inequality
K.旧不等式[K..如娜画灯;Kop皿“p助eHcT加l 定义在R”中某有界域A上的向量函数。,(州)(i,j=1,一,n)及其导数的一个不等式:。f子Z。。,上。性、‘一寸,,2飞、,、,,.,:}}2 l之》l二一-二+一l十2 .U,之4X声C 11”111, 弓t‘界,\口x’口x一/“一’J (l)其中 、(.、、}_f丁寸/竺、’十夕。:飞dx.‘2) ,,””1一少飞1仁1又”x,2’*分1一“j一‘”‘一’Kom不等式对空间H;(A)中的向量函数也成立,这里H:(A)是空间C’(A)关于范(2)的完全化.不等式(1)有时称为第二Kom不等式(seco记Komh闪画妙);第一K泊川不等式(阮tK劝m址q盗山ty)指的是不含(l)中积分内第二项的不等式(l). 此不等式曾由A.Kom(1姗)提出,目的在于获得弹性理论中非齐次方程的解的先验估计.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条