1) odd strong harmonious labeling
奇强协调标号
1.
If there exist a mapping f:V→{0,1,2,…,2|E|-1} Satisfied 1) u,v∈V,if u≠v,then f(u)≠f(v);2) e1,e2∈E,if e1≠e2,then g(e1)≠g(e2),here g(e)=f(u)+f(v),e=uv;3) {g(e)|e∈E }={1,3,5,…,2|E|-1},then G is called odd strong harmonious graph and f is called odd strong harmonious labeling of G.
对简单图G=〈V,E〉,如果存在一个映射f:V→{0,1,2,…,2 E-1}满足1)对任意的u,v∈V,若u≠v,则f(u)≠f(v);2)对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=f(u)+f(v),e=uv;3){g(e)e∈E}={1,3,5,…,2 E-1},则称G为奇强协调图,f称为G的奇强协调标号。
2) strongly harmonious labeling
强协调标号
1.
In this paper we prove that graph P~2_n, B(3,2,k) and B(4,3,k) are strongly harmonious graphs, and the strongly harmonious labelings are given.
证明了图Pkn和B(3,2,k),B(4,3,k)都是强协调图,并给出了它们的强协调标号。
3) graphic strong harmony label
图的强协调标号
4) weak odd strong harmony
次奇强协调
1.
In this paper, we define a class of new graph-spoon star graph and as wellas weak odd strong harmony graph, is defined, the writers give Stn P1C4’s odd graceful labeling、k- graceful labeling and weak odd strong harmony labeling,and prove that the Stn P1C4 is a odd graceful graph, k-graceful graph and weak odd strong harmony graph.
该文定义了一类新的图形——星勺图StnP1C4,并定义了图的次奇强协调性,同时给出了它的奇优美标号、k-优美标号及次奇强协调标号,从而证明了星勺图StnP1C4是奇优美图、k-优美图和次奇强协调图。
5) odd strong harmonious graph
奇强协调图
1.
If there exist a mapping f:V→{0,1,2,…,2|E|-1} Satisfied 1) u,v∈V,if u≠v,then f(u)≠f(v);2) e1,e2∈E,if e1≠e2,then g(e1)≠g(e2),here g(e)=f(u)+f(v),e=uv;3) {g(e)|e∈E }={1,3,5,…,2|E|-1},then G is called odd strong harmonious graph and f is called odd strong harmonious labeling of G.
对简单图G=〈V,E〉,如果存在一个映射f:V→{0,1,2,…,2 E-1}满足1)对任意的u,v∈V,若u≠v,则f(u)≠f(v);2)对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=f(u)+f(v),e=uv;3){g(e)e∈E}={1,3,5,…,2 E-1},则称G为奇强协调图,f称为G的奇强协调标号。
6) Odd strongly harmonious labelings
奇强协调值
补充资料:椐椐强强
1.相随貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条