1) regular implication operator
正则蕴涵算子
1.
The properties of Triple I method based on the regular implication operator;
基于正则蕴涵算子的三I算法的性质
2.
The notions of conditional α-tautologies of formulas in the propositional logic systems based on regular implication operators are proposed.
在基于正则蕴涵算子的命题逻辑系统中给出了公式的条件α-重言式的概念,讨论了它们的性质,并分别在Lukasiew icz逻辑系统、Go¨del逻辑系统、乘积逻辑系统、L*逻辑系统及相应的n值逻辑系统中研究了条件α-重言式的分布。
3.
The concept of regular implication operators is introduced and it is proved that the Lukasiewicz operator, Gdel operator, product operator and R_0-operator are regular implication operations.
给出了正则蕴涵算子的概念,证明了Lukasiewicz算子、G del算子、乘积算子和R0 算子都是正则蕴涵算子。
2) The regular fuzzy implication
关于正则蕴涵算子
3) Normal Implication Operator
正常蕴涵算子
4) implication operator
蕴涵算子
1.
United forms of triple I method based on a sort of implication operators;
基于一类蕴涵算子的三I算法的统一形式
2.
Triple I methods based on parametric-implication operators;
基于含参量蕴涵算子的三I算法
3.
Research on implementation algorithm of fuzzy concept lattices based on different implication operator;
基于不同蕴涵算子的模糊概念格建格算法研究
5) implication
[英][,ɪmplɪ'keɪʃn] [美]['ɪmplɪ'keʃən]
蕴涵算子
1.
We further study the inducing operators of a quasi-t-norm (or an implication) on a complete lattice once discussed in Reference [2],and prove that implication and the t-inducing operator of quasi-t-norm equals the original quasi-t-norm under a given condition and a given scope.
利用文献[2]中讨论完备格上蕴涵算子和拟t-模的诱导算子的思想方法,证明了蕴涵算子和拟t-模的2次T-诱导在一定条件下、一定范围内等于原拟t-模(或蕴涵算子),得到了两个不同诱导算子之间的关系及它们与L-关系方程解的联系。
2.
This paper discusses the sets of solutions of equations T(a,x)=b and I(a,x)=b, where L is a complete Brouwerian lattice, T is an infinitely V -distributive pseudo-t-norm on L, I is an infinitely A-distributive implication on L, and J=7(T).
讨论方程T(a,x)=b,I(a,x)=b的解集,其中L为完备Brouwer格,T为无穷V-分配伪t-模,I是无穷∧-分配蕴涵算子,且I=I(T)。
6) Regular Implication lattice
正则蕴涵格
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条