1) family of implication operator
蕴涵算子族
1.
The new family T(q,p)-LGN of left-continuous t-norms and its residua family R(q,p)-LGN of implication operators,which include Lukasiewicz implication operator,Godel implication operator and R0 implication operator,are presented,and the method of fuzzy reasoning based on family of implication operators is proposed,and FMP model Triple Ⅰ sustaining method based on R(q,p)-LGN is given.
给出了一族新的左连续三角模族T(q,p)-LGN族及其伴随蕴涵算子族R(q,p)-LGN,它包括Lukasiewicz蕴涵算子、Gdel蕴涵算子及R0蕴涵算子;提出了基于蕴涵算子族的模糊推理的思想,并给出了基于蕴涵算子族R(q,p)-LGN的FMP模型的三Ⅰ支持算法。
2) family of implication operators Rp-II
蕴涵算子族Rp-II
1.
Triple I Method and α-Triple I Method under the family of implication operators Rp-II are discussed,this can raise the credibility of reasoning result.
证明了系统IIP是基于连续三角模族Tp-II及其伴随蕴涵算子族Rp-II的逻辑系统,并证明了系统IIP与系统II是等价的。
3) family of implication operator Lλ0λG
蕴涵算子族Lλ0λG
1.
Reverse α-triple I sustaining method under family of implication operator Lλ0λG;
基于蕴涵算子族Lλ0λG的反向α-三I支持算法
2.
Fuzzy reasoning triple I constraint method under family of implication operator Lλ0λG;
基于蕴涵算子族Lλ0λG的模糊推理三I约束算法
3.
Reverse triple I sustaining method under family of implication operator Lλ0λG;
基于蕴涵算子族Lλ0λG的反向三I支持算法
5) family of implication operator LλOλG
蕴涵算子族LλOλG
1.
At first,fuzzy systems under CRI method and their response ability are studied which are based on the family of implication operator LλOλG.
针对蕴涵算子族LλOλG,首先讨论了基于CRI算法的模糊系统及其响应性能,结果表明,蕴涵算子族LλOλG模糊系统只具有阶跃输出能力,不具有函数逼近泛性;其次揭示了蕴涵算子族LλOλG模糊系统的概率意义,给出了其概率分布,它有充当模糊系统"系统内核"的作用。
6) implication operator
蕴涵算子
1.
United forms of triple I method based on a sort of implication operators;
基于一类蕴涵算子的三I算法的统一形式
2.
Triple I methods based on parametric-implication operators;
基于含参量蕴涵算子的三I算法
3.
Research on implementation algorithm of fuzzy concept lattices based on different implication operator;
基于不同蕴涵算子的模糊概念格建格算法研究
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条