说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Gauss方程
1)  Gauss equation
Gauss方程
1.
On the Gauss equation of R curvature, P curvature and flag curvature are given in submanifolds.
利用Chern联络D、Cartan张量A以及第二基本形式H ,研究了Finsler子流形中的诱导Chern联络与第一、第二曲率R和P,给出了子流形的关于R曲率、P曲率以及flag曲率的Gauss方
2)  Gaussian curvature equation
Gauss曲率方程
1.
Conformal Gaussian curvature equations on the 2-dimensional complete manifolds with nonnegative curvatures
非负曲率完备2维流形上的共形Gauss曲率方程
3)  Gauss type functional equation
Gauss型函数方程
1.
Gauss type functional equation and characteristics of its mean values;
Gauss型函数方程和平均值特征(Ⅱ)
2.
Gauss type functional equations and characterizations of mean values;
Gauss型函数方程和平均值特征
4)  Gauss functional equation
Gauss的函数方程
5)  Gauss process
Gauss过程
1.
The moments of claim size in(0,t)are calculated under the force of interest accumulation function as a Gauss process.
当随机利率采取一般的Gauss过程时,得到了总索赔额现值的各阶矩,并在某些条件下给出了各阶矩的具体表达式。
2.
Gauss process and non-Gauss process and two kinds of integrals, Ito integrals and Stratonovich integrals.
讨论了工程中经常遇到的两种随机过程,即Gauss过程和非Gauss过程,以及与此相关的两类随机积分,Ito积分与Stratonovich积分。
3.
Considering the effect of many factors on interest,we establish the model under random rates of interest with both Gauss process and independent increment process,and get the order moments of present value for total claim amount.
考虑到多种因素对利率的影响,对随机利率采取Gauss过程与独立增量过程联合建模,得到了总索赔额现值各阶矩的一般表达式。
6)  Gaussian process
Gauss过程
1.
After dividing the silhouette into small components their sub-manifolds are learned using Gaussian process,which are then used to calculate the likelihood probability by means of a sub-manifold voting strategy.
将人体轮廓分成几个小的部件之后,以Gauss过程训练获得其相应的子流形,并采用子流形投票的方式计算似然概率。
2.
In this paper, we discuss the moduli of non--differentiability of stationaryincrement Gaussian processes and how small the increments of this kind of Gaussian processesare.
本文讨论具有平稳增量Gauss过程的不可微模,以及这类Gauss过程增量有多小的问题,并将有关Wiener过程的结果,在一定的条件下推广到这类Gauss过程中去。
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条