说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 反乘法映射
1)  anti-multiplicative map
反乘法映射
1.
In this paper,we prove a result: suppose f:Г→Mn(P) is a anti-multiplicative map that preserve trace,then there exists an invertible S∈Mn(P) which form f(A)=SATS-1,A∈Г.
本文证明了一个结果:若f:Г→Mn(P)是一个保迹反乘法映射,则存在可逆矩阵S∈Mn(P),使得f(A)=SATS-1,A∈Г。
2)  Spectrum preserving anti-Multiplicative Map
保谱反乘法映射
3)  multiplicative map
乘法映射
1.
Let f:An(F)→Гn(F) is a multiplicative map which satisfies trf(A)=trA,A∈An(F),then there exists an invertible upper triangular matrix P∈Tn(F),such that f(A)=P-1AP.
f:An(F)→Гn(F)是满足trf(A)=trA,A∈An(F)的乘法映射,那么存在可逆上三角矩阵P∈Tn(F),使得f(A)=P-1AP。
2.
In this paper,we prove a result: suppose f:Г→Mn(P) is a anti-multiplicative map that preserve trace,then there exists an invertible S∈Mn(P) which form f(A)=SATS-1,A∈Г.
本文证明了一个结果:若f:Г→Mn(P)是一个保迹反乘法映射,则存在可逆矩阵S∈Mn(P),使得f(A)=SATS-1,A∈Г。
4)  multiplicative mapping
乘法映射
1.
Multiplicative and anti-multiplicative mappings on matrix algebra;
矩阵代数的乘法映射与反乘法映射
2.
Let N be a Nest on a Hilbert space H which has satisfied H-≠H,N-≠N(for arbitrary N in N ),then we give out the form of rankpreserving multiplicative mapping φ on nest algebra,it is :φ(T)=ATA-1 for every T∈alg N,where A is a linear or conjugate linear bounded invertible operator.
设N为Hilbert空间H上的Nest,满足H-≠H,N-≠N( N∈N),则Nest代数algN上保秩乘法映射φ具有形式:φ(T)=ATA-1, T∈algN,其中A为线性或共轭线性有界可逆算子。
5)  multiplicativity-preserving mapping
保乘法映射
6)  multiplicative maps
可乘映射
补充资料:反共形映射


反共形映射
anii - confonnal mapping

反共形映射【朋卜伪.伽肋al map杯飞;阳T娜.咖甲-,。“0”印一,],竿一于夺若形呼妙(conformal map-Ping of the se印n‘1眨nd) 复:平面上一点:。的邻域到复*平一面上点w。邻域一上的连续映射,‘白保持过点20的曲线间的角度但改变其方向.产生反共形映射的函数八:)是反全纯函数(anti一holomorpll,c functlon).亦见共形映射(con-formal maPPing).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条