1) 1-Lipschitz mapping
1-Lipschitz映射
1.
We discuss the extension problem of non-surjective 1-Lipschitz mappings between unit spheres,and obtain that,under some conditions,every 1-Lipschitz map can be extended to be a real linear isometric mapping on the whole space.
讨论了单位球面间非满1-Lipscllitz映射的延拓问题并得到:在一定条件下,每个1-Lipschitz映射都能被延拓成全空间上的实线性等距映射。
2) Lipschitz mapping
Lipschitz映射
1.
Furthermore,as applications, some relations between Apollonian boundary condition,quasiconformal mappings and lo- cally Lipschitz mappings is obtained.
证明了(1)■中真子域D上的Apollonian度量αD是拟共形映射的拟不变量;(2)■中严格一致域是拟共形不变的;(3)■中的Jordan域D是拟圆当且仅当D是严格一致域,作为应用,进一步得到了Apollonian边界条件,拟共形映射和局部Lipschitz映射之间的关系。
2.
In this paper we study the structures properties of the space of Lipschitz mappings as a Banach spaces, mainly we have studied the complementarity of its closed subspace the space of bounded linear operators.
该文研究Lipschitz映射空间作为一个Banach空间的结构性质,主要研究了它的闭子空间有界线性算子空间(赋予算子范数)在其中的可余性。
3) Lipschitz maps
Lipschitz映射
1.
Let (X,d) be a compact metric space,we use↓USC(X)and↓LIP(X) to denote the family of the regions below of all upper semi-continuons maps and all Lipschitz maps from X to I =[0,1],respectively.
令(X,d)是紧的度量空间,用↓USC(X)和↓LIP(X)分别表示从X到I所有的上半连续映射和所有Lipschitz映射的下方图形的全体。
4) bi-Lipschitz map
双Lipschitz映射
1.
In the paper, the Hausdorff dimension of some fractal raised from a problem of plane geometry isobtained by a bi-Lipschitz map from square to general quadrangle.
本文构造一般四边形与正方形的某种双Lipschitz映射,从而将四边形中一类分形之维数转化成正方形中对应分形之维数。
5) Lip-chitzian mapping
Lipschitz-映射
6) generalized Lipschitzian mapping
广义Lipschitz映射
补充资料:Lipschitz积分条件
Lipschitz积分条件
Lipsdnte integral condition
U尹如忱积分条件〔U脚而匕加魄阿“旧击柱门;刀‘四.职yc加哪似犯印目1.刃oel 以积分度量给出的关于函数增长性态的一种限制.称空间L,(a,b)(p笋l)中的函数f在[a,b1上满足具有常数M>O的二>0阶UpschjtZ积分条件,如果对所有h钊0,b一a),有 {了“,,(一卜,(·)},己·}”’一;(·)记作f〔LiP、(:,夕),f〔H二(M)或f任LiP(“,尸),f〔H二·对于周期函数(以b一a为周期)情形,可类似地定义Li讲ehitZ积分条件,只是不等式(*)中的积分上限b一h必须代之以b.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条