1) Lipschitz strongly pseudocontractive mappings
Lipschitz强伪压缩映射
2) Lipschizian strongly pseudocontractive mapping
Lipschitz强伪压缩映象
1.
Let X be a closed subspace of a real Banach space E , and T:X→X be a Lipschizian strongly pseudocontractive mapping with fixed point x~* .
设X是实Banach空间E的闭子空间,T:X→X是Lipschitz强伪压缩映象,x*为T的不动点。
3) generalized Lipschitz pseudocontractions
广义Lipschitz伪压缩映射
5) strongly pseudo-contractive mapping
强伪压缩映射
1.
In this paper,we establish the equivalence between the convergence of Mann iteration with errors with the convergence of Ishikawa iteration with errors,where T is an uniformly continuous strongly pseudo-contractive mapping.
建立了Mann迭代和带误差的Ishikawa迭代收敛于T的不动点的等价性,其中T是一致连续强伪压缩映射。
2.
The purpose of this paper is to study the convergence problem of Ishikawa and Mann iterative processes for a strongly pseudo-contractive mapping T without the Lipschitz condition by using a new approximation method.
应用新的逼近方法去研究在ISHIKAWA和MANN迭代过程下非LIPSCHITZ的强伪压缩映射的收敛性定理。
6) Lipschitz Φ-strongly pseudocontractive maps
LipschitzΦ-强伪压缩映射
补充资料:压缩映射原理
压缩映射原理
contracting -mapping principie
压缩映射原理[阴加‘飞一maPPing州ndpfe;“哪脚-川联or‘吻嫂.浦n钾IIu恤] 一个定理,断言完全度量空间(X,p)(或这样的空间的一个闭子集)到它自身的映射f的不动点(flxedpoint)的存在性与唯一性,如果对任何的x‘,x”,不等式 P(f(x‘),f(x’‘))《宁试x‘,x’‘)(l)成立,这里q为某个固定的常数,O
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条