说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 弦等变上同调群
1)  stringy equivariant cohomology group
弦等变上同调群
2)  equivariant cohomology
等变上同调
1.
The S~1 equivariant cohomology of CP~n
CP~n的S~1等变上同调群
3)  equivariant cohomology theory
等变上同调论
4)  equivariant cohomology rings
等变上同调环
1.
In this paper we consider 4 dimensional connected closed S~1-manifolds M with a non-empty finite fixed point set,each equivariant cohomology rings of M,with coefficient Q,H_G~*(M;Q) is a free H~*(BG;Q) module.
设M为具有有限不动点集的4维连通闭G-流形,它的Q系数等变上同调环H_G~*(M;Q)是自由H~*(BG;Q)模,其中G=S~1为圆周群。
5)  cohomology groups
上同调群
1.
The information about the first Chern class makes the cohomology groups and homotopy groups of the configuration space worked out.
由此又算出了它的上同调群与同伦群。
6)  cohomology [kəuhə'mɔlədʒi]
上同调群
1.
The theory of homology and cohomology is very important in mathematics.
本文结合超代数上同调群的定义,研究得到了具有相伴单位元1的结合超代数的上同调群的一些较好的性质。
补充资料:Александров-(?)ech同调与上同调


Александров-(?)ech同调与上同调
Aleksandrov. tech homology and cohomology

人皿拍国卿甲.为陀h同调与上同调[Alek劝Indmv_乙比hh曲d馆y明do团.助d嗯y;AnO..口脚.一月exar傲0-一“一“。nII.],谱回娜与丰回娜(s pectral hom“-logy and cohomofogy) 满足所有Steen找闷一Eilenberg公理(Steenrod一Ei-lenberg axfoms)(正合性公理可能除外)以及某个连续性条件的同调论与上同调论.A叱碱冠环叮”.一亡ech回娜群(模)(川e协androv一亡e比homolo留歹ou声(m记过es))H,(X,A;G)([l],[2])定义为空间X的所有开覆盖:上的逆向极限lim_H”(“,“’;G);这里“不仅代表覆盖,也代表它的网,丫是戊的子复形,它是“限制在闭集A上的网(见集合族的网(nerve of a family ofsets)).在同伦的意义下,由P到:的包含映射所定义的单纯投射(口,厂)~(“,“‘)的存在性,确保可以过渡到极限.脉K闭J月为。一亡ech上同调群(月eksandrov一亡echcohomofo留groups)H”(X,丸G)定义为正向极限hm_H”(“,:‘;G).同调群满足除正合公理外的所有steenrod一Eilenberg公理.上同调群满足所有的公理,部分地由于这个原因,上同调群常常更有用.如果G是紧群或域,则正合公理对紧统范畴上的同调群也成立.另外,A叱班么凡叮幻B一亡ech同调群和上同调群有连续性:当X=hm_戈时,其同调(上同调)群等于紧统龙的同调(上同调)群的相应极限.人朋耳乏城叮刃。一亡ech理论是满足stcenrod一Eilenberg公理(除上面提到的那个外)和这种连续性条件的唯一理论.在仿紧空间范畴上,常用到Eilenberg一Madave空间的映射刻画上同调;尽管该上同调等价于层论(s heaf theory)中定义的上同调.上同调也可以用某上链复形的上同调来定义,这使得有可能用上链的层进行运算.应用于同调的类似的思想,包含在N.Steenrod,A.Borel及其他人首创的同调论中,它满足包括正合性公理在内的所有公理(但连续性除外).A朋袱么耳叮力B一亡ech同调及上同调,包括经上述修改的,被应用于连续映射理论中的同调问题,变换群理论(与商空间的联系),广义流形理论(特别是各种对偶关系),解析空间论(例如,定义同调的基本类)及同调维数理论等等.【补注】也常把A服班卫瑞叮”B一亡ech上同调称为亡ech上同调(亡ech cohomofogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条