3) multi-degree matrix
多次矩阵
1.
The multi-degree matrix,catastrophe theory of functional and by them methods of two kinds of the judgement of dynamic stability of complex nonlinear system,particularly nonlinear nonstationary system are established.
本文创立了多次矩阵、泛函突变论,并利用它们建立了判定系统运动整体稳定性的两种方法:第一法——泛函加初等突变论法:第二法——泛函突变论法。
4) sub unitary matrix
次酉矩阵
1.
An introduction to sub unitary matrix and its properties are presented,and the relation between sub unitary matrix and (anti )sub Hermite matrix is studied.
提出了次酉矩阵的概念,研究了它的基本性质及其与( 反) 次Hexmite阵的关系。
5) Seondary U matrix
次U矩阵
补充资料:次切线和次法线
次切线和次法线
subtangent and subnormal
次切线和次法线【,奴。嗯翻ta己,由.刃nllal;no八Kaca-,一eJ,,,Ra”H”0八nOPM幼L」 有向线段QT和QN,它们是某一曲线在点M处的切线(tan罗nt line)段MT和法线(norlml)段对N在、轴上的投影(见图). 少l, 口‘吧不‘一一-一-一号-份甲间二 TO柑 如果达一曲线是函数y二‘j(x)的图形,则次切线和次法线的长度分别等于 。二__f(x)。、了_了丫、,、,,,_、 心T“一分书丁,QN=f(x)f’(x), 一f’(x)’乙一其中x是点M的横坐标.如果这一曲线由参数式给出: x=甲(t),夕=沙(t),则 。7’二一竺红纽自兰立。、,_竺立丝三旦 “一少‘(t)’“一少‘(t)其中t是确定曲线上点M的参数值.Bc3一3【补注】 IAI]Berger,M二Geo瑰t仃,2,SP力幻gcr.1989(中译 本二M.贝尔热,儿何,第一一五卷,科学出版社, 1987一1991). 工AZ j Go掀5 Te认eira,F,Tralt己des oourbes,l一3. Chelsea.犯Print,1971. 〔A3 1 Lamb,日二知6mtes,Inalc时e以us,Cambnd罗.U:uv. Press,1924.杜小杨译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条