说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> k重Mycielski图
1)  k-multi-Mycielski graph
k重Mycielski图
1.
The upper bounds of the adjacent vertex-distinguishing total coloring number on k-multi-Mycielski graphs are discussed.
给出了一个简单图G的k重Mycielski图Mk(G)(其中k为正整数)的邻点可区别全色数的上界,得到了圈、星、轮、扇的k重Mycielski图的邻点可区别全色数。
2)  Mycirelski graph
Mycielski图
1.
It is μ(G) called Mycrelski Graph G,V(μ(G))=V(G)∪V′∪{w}and wV(G) and E(μ(G))=E(G)∪{uv′|u∈V(G),v′∈V′,uv∈E(G)}∪{wv′|v′∈V′} where wV(G),V′={v′|v∈V(G)} In this paper,we can see that the total chromatic number of Mycirelski graph of some graphs such as path,cycle,fan,wheel,star, complete graph and etc.
对图G(V ,E) ,μ(G)称为G的Mycielski图 ,V( μ(G) ) =V(G)∪ {v′|v∈V(G) }∪ {w} E( μ(G) ) =E(G)∪ {uv′|u∈V(G) ,v′∈V′且uv∈E(G) }∪ {wv′|v′∈V′}其中w V(G) ,V′={v′|v∈V(G) } 。
3)  Mycielskian graph
Mycielski图
1.
In this paper ,we studied edge chromatic number of Mycielskian graph.
对图G(V,E),μ(G)称为G的Mycielski图,V(μ(G))=V(G)∪{v′|v∈V(G)}∪{w},且w V(G),而E(μ(G))=E(G)∪{uv′|u∈V(G),v′∈V′,且uv∈E(G)}∪{wv′|v′∈V′},其中w V(G),V′={v′|v∈V(G)}。
4)  Mycielski Graph
Mycielski图
1.
Equitable Total Chromatic Number of Mycielski Graphs of Two Classes of Graphs;
两类图的Mycielski图的均匀全色数
2.
For given graph G=(V,E),the Mycielski graph of G,denoted by μ(G),is the graph with V(μ(G))=V∪V ∪{w} and E(μ(G))=E∪{xy |xy∈E}∪{wy |y ∈V } where V ={y |y∈V},For each y∈V(G),y is called to be the copied vertex of y.
给定图G=(V,E),G的Mycielski图μ(G)被定义为一个新图:V(μ(G))=V∪V'∪{w},其中V'={y'|y∈V};E(μ(G))=E∪{xy'|xy∈E}∪{wy'|y'∈V'},称点y'为y的复制点。
3.
In this paper,based on introducing a special kind of partition of the vertex set of Mycielski graphs and some new concepts,the characters of the circular coloring of Mycielski graphs are analyzed.
通过引入一类点集划分的概念,研究了Mylielski图循环染色的性质,证明了当完全图的点数足够大时,它的Mycielski图的循环色数与其点色数相等。
5)  Mycielski graphs
Mycielski图
1.
In the active research subject of the circular chromatic number of Mycielski graphs,a famous conjecture is that the circular chromatic number of Mycielski graph of complete graphs is equal to its chromatic number.
通过引进Mycielski图点集的一类特殊划分,利用该划分在Mycielski图循环着色中的特点改进了如下猜想:完全图的Mycielski图的循环色数等于它的点色数。
2.
We also study the incidence coloring numbers of Mycielski graphs of trees and complete bipartite graphs.
同时还研究了树和完全二部图的Mycielski图的关联色数。
6)  general Mycielski graphs
广义Mycielski图
1.
On the adjacent vertex-distinguishing incidence coloring of general Mycielski graphs;
关于图的广义Mycielski图的邻点可区别关联着色
2.
Adjacent vertex distinguishing total coloring of path's general Mycielski graphs
路的广义Mycielski图的邻点可区别的全染色
3.
Let G be a simple graph,M_n(G) is called a general Mycielski graphs of G if V(M_n(G))={v_(01),v_(02),…,v_(0p);v_(11),v_(12),…,v_(1p);…;v_(n1),v_(n2),…,v_(np)};and E(M_n(G))=E(G)Y{v_(ij)v_((i+1)k)|v_(0j)v_(0k)∈E(G),1≤i,j≤p,i=0,1,…,n-1},where V(G)={v_(0i)|i=1,2,…,p}.
设G是简单图,V(Mn(G))={v01,v02,…,v0p;v11,v12,…,v1p;…;vn1,vn2,…,vnp};E(Mn(G))=E(G)∪{vijv(i+1)k|v0jv0k∈E(G),1≤i,j≤p,i=0,1,…,n-1},则Mn(G)称为G的广义Mycielski图,其中,V(G)={v0i|i=1,2,…,p}。
补充资料:图的减缩图(或称图子式)


图的减缩图(或称图子式)
minor of a graph

图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条