1) Riccati transformation
黎卡提变换
1.
By using the method of differential inequality and Riccati transformation,some sufficient criteria are obtained for oscillation of such systems under Robin and Dirichlet boundary value conditions.
讨论了一类偶数阶非线性中立型偏微分方程组解的振动性,利用微分不等式方法和黎卡提变换,获得了这类方程组在Robin和Dirichlet边值条件下振动的若干充分判据,所得结果推广和包含了已知的一些结论,并通过一些例子加以阐明。
2.
By using the method of differential inequality and Riccati transformation,some sufficient conditions are obtained for oscillation of the systems under two kinds of different boundary value conditions.
研究一类偶数阶非线性中立型偏泛函微分方程系统解的振动性,利用微分不等式方法和黎卡提变换,获得了该类系统在两类子同边值条件下振动的若干充分条件。
3.
These results improve oscillation criteria of Wint-ner,Hartman,Kamenev,Yan and Philos using a generalized Riccati transformationu(t)=a(t) r(t).
这些结果改进了Wintner,Hartman,Kamenev,Yan和Philos利用通常的黎卡提变换u(t)=a(t)r(t)xx′((tt))+k(t),其中k∈C1是[t0,∞)上的连续函数,和a(s)=exp{-2∫sk(ξ)dξ}所得的振动准则。
2) generalized Ricatti transform
广义黎卡提变换
1.
Sufficient condtion for oscillation of all solutions of a class of second order nonlinear impulsive delay differential equation is obtained by using generalized Ricatti transform,which extend the corresponding results of Dzˇurina and Stavroulakis [Appl Math Comput,2003,140,445—453] for equations without impulsive effects.
利用广义黎卡提变换得到了一类二阶非线性脉冲时滞微分方程所有解振动的充分条件,推广了Dz∨urina和Stavroulakis中关于非脉冲方程的相关结果。
3) Riccati equation
黎卡提方程
1.
Two sufficient conditions riccati equation has elementary solution;
黎卡提方程有初等解法的两个充分条件
2.
Optimal control of electrohydraulic position servo system is designed by using optimal control theories and Riccati equation.
应用最优控制理论和黎卡提方程对电液位置伺服系统进行最优控制的设计,得出最优控制系统的闭环传递函数, 并结合算例,绘制出该系统的波德图,算例表明了该方法的有效性和工程实用性。
3.
A state feedback control law is determined via the Lyapunov functional approach,checking the Hamiltonian matrix and solving an algebraic Riccati equation or solving linear matrix inequalities for which the stability of the closed-loop system is guaranteed when control saturation effectively occurs.
通过李雅普诺夫函数方法检验哈密顿矩阵 ,以及解代数黎卡提方程或解线性矩阵不等式 ,决定一个状态反馈控制律 ,使得当控制饱和发生时系统稳定 。
4) Riccati equations
黎卡提方程
1.
The 2 ̄N type algorithm is applied to both the algebraic and differential Riccati equations byselecting appropriate parameters.
选择恰当的参数,将2 ̄N类算法用于代数与微分黎卡提方程。
5) Riccati inversion
黎卡提反演
6) system of Riccati Equation
黎卡提方程组
1.
This paper presents a kind of system of Riccati Equations with polynomial coefficients in which some parts equal to zero and we obtain the sufficient condition for its solution with movable poles.
本文继续对部分系数恒为零的多项式系数的一类黎卡提方程组,论证了它的解具有某类流动极点的充分条件。
补充资料:黎卡提方程(见线性二次型量优控制)
黎卡提方程(见线性二次型量优控制)
Riccati equation
L袱以}tongcheng黎卡提方程(Rieeati equation)次型最优控制。见线性二
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条