1) real orthogonal matrix
实斜对称矩阵
2) skew-symmetrical matrix
斜对称矩阵
1.
Has studied The skew-symmetrical transformation and the skew-symmetrical matrix nature was studied,has given the definition of skew-symmetrical transformation and the nature theorem proof was given,simultaneously the expansion to the skew-symmetrical matrix nature was carried.
研究了斜对称变换及斜对称矩阵的性质,给出了斜对称变换定义及性质定理的证明,同时对斜对称矩阵的性质进行了扩展。
3) real symmetric matrix
实对称矩阵
1.
Recursive algorithm for calculating eigenvalues of real symmetric matrix based on LDL~T decomposition;
基于LDL~T分解求实对称矩阵特征值的递归算法
2.
In this paper,the inertial theorem of real symmetric matrix has been proved by three methods in three aspects: the relationship between real symmetric matrix and real quadratic form,the relationship between real symmetric matrix and symmetric bilinear function of real linear space.
从实对称矩阵与实二次型的联系、实对称矩阵与实线性空间的对称双线性函数的联系以及将实对称矩阵作为研究主体这三个角度,介绍实对称矩阵的惯性定理的三种证明,以期加深对实对称矩阵的惯性定理的理解。
3.
In this paper, we give a method to obtain the orthogonal similar transformation for the the 3 ×3 real symmetric matrix with a 2 multiplicity root and 4×4 real symmetric matrix with a 3 multiplicity root without using the Schmidt orthogonalization .
n阶实对称矩阵A必正交相似于一个对角阵,当A的特征方程存在重根时,求解正交相似变换矩阵有时需要对特征向量进行施密特(Schmidt)正交化,在给出三阶实对称矩阵的特征方程存在二重很及四阶实对称矩阵的特征方程存在三重根时,证明不需要进行施密特正交化就可得到正交相似变换矩阵的求解法,同时给出了另一个非重根的特征值对应的特征向量的简单求解法。
4) real symmetrical matrix
实对称矩阵
1.
This paper demonstrates a new method to work out the diagonal matrix from real symmetrical matrix A=(a_(ij)) by applying householder transformation.
本文利用Houesholder变换的性质给出了实对称矩阵对角化的一种方
5) real symmetry matrix
实对称矩阵
1.
A high efficient parallel algorithm for eigenvalue picking-up of real symmetry matrix;
一种实对称矩阵特征值提取的高效并行算法及实现
2.
The superior boundary and below boundary of the real symmetry matrix eigenvalue is estimated based on secondary programming in this paper.
利用二次规划对实对称矩阵的所有特征值给出了上下界的估
6) real symmetric matrices
实对称矩阵
1.
As an application,we find a method for calculating the feature polynomial for some real symmetric matrices.
利用矩阵运算的有关性质,探讨了一类行列式的计算公式,作为应用,得到了一类实对称矩阵的特征多项式的求法。
2.
A method of estimating the maximum and minimum eigenvalue of real symmetric matrices is given in this article, and its application is also discussed.
本文给出了实对称矩阵最大与最小特征值的一种估计方法及其应用。
补充资料:对称矩阵
对称矩阵
symmetric matrix
对称矩阵[母吐朋etric matr议;c“MMeTPn、ec绷MaT-P“”al 一个方阵,其中关于主对角线位置对称的任意两个元素彼此相等,即矩阵A二}a,*{了等于它的转置矩阵: a,*,a*。,i,k二l,…,n. 一个n阶实对称矩阵恰有”个实本征值(按重数计算).如果A是一个对称矩阵,那么A一’和A矛也是对称矩阵,如果A与B是同阶的对称矩阵,那么A十B是对称矩阵,而AB是对称的,当且仅当AB二BA.T.C,flH侧K“Ha撰【补注l每一个复方阵相似于一个对称矩阵.一个(n xn)实矩阵是对称的,当且仅当其相伴算子R”~R”(关于标准基)是自伴的(关于标准内积).极分解(po址decolllPOsition)将矩阵A分解为一个对称矩阵与一个正交矩阵之积SQ. 令B:VxV~k是向量空间V上的一个双线性型(b山near fonn)(见双线性映射(bl址℃ar map·ping)).那么B的矩阵(关于这两个因子V的相同的基)是对称的,当且仅当B是一个对称双线性型(synln吮tric bilinear form),即B(“,v)“B(v,“).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条