1) Kakutani Fixed Point Theorem
Kakutani不动点定理
1.
Kakutani Fixed Point Theorem in Fuzzy Normed Linear Space;
模糊赋范线性空间上的Kakutani不动点定理
2.
By using Carleman estimates for the linearized equation and Kakutani fixed point theorem, we establish the local controllability of steady state solutions to this model.
利用线性化系统的Carleman估计和Kakutani不动点定理, 证明了该模型稳态解的局部能控性。
3.
By the set valued version of pasting lemma and the Kakutani fixed point theorem,we prove the Leray-Schauder fixed point theorem.
我们首先给出集值映射的焊接引理,利用集值映射的焊接引理和Kakutani不动点定理证明Leray-Schauder不动点定理,并证明Leray-Schauder不动点定理与Brouwer不动点定理等价。
2) fan kakut Ani fixed point theorem
Fan-Kakutani不动点定理
3) Kakutani fixed theory
Kakutani不动点
1.
In this paper, the author discusses the conditions of the existence of Nash equilibria of discontinous game and proves the existence of pure strategy Nash equilibria using Kakutani fixed theory when payoff function ui(Si,s-i) is uppersemicontinous for Si and lowersemicontinous for S-i.
讨论了不连续对策纯策略Nash平衡的存在性,并运用Kakutani不动点定理证明了收益函数ui(Si,S-i)对si上半连续,对s-i下半连续时纯策略Nash平衡的存在性。
4) Kakutani-Fan-Glicksberg`s Fixed Point Theorem
Kakutani-Fan-Glicksberg不动点
1.
By using this theorem a topological Kakutani-Fan-Glicksberg`s Fixed Point Theorem without linear structure is obtained.
其次运用这个定理证明了在无线性结构的拓扑空间中的 Kakutani-Fan-Glicksberg不动点定理 。
5) Fan-Kakutani Theorem
Fan-Kakutani定理
6) fixed-point theorem
不动点定理
1.
By using fixed-point theorem in cones and fixed-point index theory,a class of discrete P-Laplacian boundary value problem was discussed and a sufficient condition of existence of one or two positive solutions was obtained.
利用锥上的不动点定理及不动点指标理论对一类离散P-Laplacian边值问题正解的存在性进行了讨论,得到了该问题存在一个及两个正解的充分条件。
2.
This paper presents an algorithm based on fixed-point theorem and Quine.
论文提出了一种基于不动点定理和Quine的建立自修复式程序的算法。
3.
By means of Darbo s fixed-point theorem,an existence result of solution for two-point boundary value problem of nonlinear fractional differential equation is obtained.
讨论了非线性分数阶微分方程的两点边值问题,其中的导数是Caputo型分数阶导数,非线性项是Carathéodory函数,应用Darbo不动点定理,证明其在L(0,1)中存在解。
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条