1) SINC function interpolation
SINC函数插值
1.
First,the sinc function interpolation algorithm was adopted to resample the seismic signals for the hi-fi of waveform in the depth to time conversion of crosswell seismic data.
重点解决了反演过程中的两个关键问题:采用sinc函数插值方法进行重采样确保了井间地震剖面深时转换中的波形保真;精细调整井的时深关系使得井间地震与地面地震资料反射特征达到相互匹配,确保了反演结果的合理性。
2) sinc-kernel Interpolation
sinc核插值
3) Sinc function
Sinc函数
1.
The paper uses Sinc function interpolation algorithm for interpolation of seismic data.
文中采用sinc函数插值算法对地震数据进行插值,分析了sinc函数在地震数据插值方面的优势,并介绍了sinc函数插值的实现方法。
2.
In this paper, it is discussed that the distribution of energy in pattern of Fraunhofer circular hole diffraction and single slit diffraction by means of properties of Bessel function and Sinc function, and proved that the relative energy in zeroth order pattern of single slit diffraction is more than that in Airy disk.
利用Bessel函数和Sinc函数的性质,讨论夫琅禾费圆孔衍射和单缝衍射各级条纹内的能量分布,证明单缝零级衍射条纹内的相对光能比艾里斑内的相对光能更
4) Interpolation function
插值函数
1.
Integration of fractal interpolation functions on various scales;
不同尺度下分形插值函数的积分
2.
Establishment of multi-fields in MSC Patran by interpolation functions of Matlab;
MSC Patran中基于Matlab插值函数的多场创建
3.
Some properties of a fractal interpolation function;
一种分形插值函数的若干性质
5) function interpolation
函数插值
1.
The research of the application of the function interpolation in making up the Flash animation;
函数插值在Flash动画补间中的应用研究
6) interpolating function
插值函数
1.
Error estimate about the third class of half - logarithm spline interpolating function;
关于第三类半对数spline插值函数的误差估计
2.
The asymptotic expansion term of remainder term for error of inequality distance first kind cubic spline interpolating function is advanced using interpolation method for basic spline.
利用基样条插值方法,给出非等距三次样条(Ⅰ)型插值函数余项渐近展开式。
3.
A method to form the interpolating function by using the moved least square method is introduced.
介绍了移动最小二乘插值函数的构造方法;以该函数作为加权残值法中的试函数,采用配点法求出试函数中的系数,进而得到边值问题的解;对Winkler地基上的非均匀梁和非规则板以及弹性半空间地基上的板进行了数值计算,并与理论结果、有限元法或其它数值方法进行了对比,采用总残值判断数值结果的准确度。
补充资料:Bessel插值公式
Bessel插值公式
Bessel interpolation formula
十户,业匕生二匕二上业业二且+ ’7’/“(2陀)! 十户划卫二业三卫上塑二止逛卫业二业且, ‘J’/之(Zn+l)!与Gauss公式(l),(2)相比,Bessel插值公式具有某些优点;特别是,如果在区间的中点,即在点t=1/2上插值,则一切奇数阶差分的系数都等于零.如果把公式(3)右边最后一项略去,则所得到的多项式凡,十1(x0十th)虽然不是一个适当的插值多项式(它仅在Zn个结点xo一伍一 l)h,…,x。十从上等于f(x》,但是给出了比同次插值多项式更好的余项估计(见播值公式(interpolatlon扔皿ula)).例如,如果x二x0十th6(x。,xl),则使用关于结点x0一h,x。,x。十h,x。+Zh写出的最常用的多项式 。;‘x‘、+,、、_一、:,,、。,,},一工{、尸,,,业止卫. 一扒‘。’‘”‘一”/2’了’/’UZ}’了’‘’几得到的余项估计,比关于结点x。一h,x。,x。,h或x。,x。+h,x。+2h写出的插值多项式给出的估计几乎要好8倍.Bessel插值公式{肠份哭1 intellx面位用肠nll山反二e”“ItI℃Pn创扭”“o“”即中叩M扒a} 作为Gauss前位]插值公式与同阶的(j:,us、后“,J括值公式(见‘;auss插值公式(Gauss Interp‘)xa[;、)11 folmtlla))之和的半而得到的公式,旋于结点卜,丫。}h.丫。h,I。·“h,丫川,.丫川,l)/7的Gaus、前向插值公式为:八一点工二戈+111卜 (,,十,帆叮h)州·川、、少不一(l) 刃+口(l、l)叮启) (2,:+1)’关f一结点丫。二戈汁h即关J结点玩,h一、、,、Zh一丫。卜h‘、从曰”!泊,、月h的同阶的Causs后向插值公式为‘·:、‘、r一、·,::、了{卜、业示过· ‘,今、、三性二i上二_上二_塑_业工__妇匕__“__土 /l/2飞,卜, “,‘一”(2) 设 (声扮石‘) 一厂冷二一下一一Bessel插值公式取下列形式([l},口1) BZ十:(一‘.“h)(3) 、一、/:{,一井片/少沪 ’/一{2}’一2’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条