1) interpolation function method
插值函数法
2) modified interpolated function method
修改插值函数法
1.
To improve the precision of finite element analysis, considering the transition elements with varying nodes in the mesh of the isoparameter elements, this paper suggested two modified methods with the same essentiality the modified interpolated function method and introducing virtual nodes method, and realized the displac.
为了提高有限元计算的精度,对于等参实体单元的网格中变节点数过渡单元,提出了本质上相同的两种修正方法——修改插值函数法和引入虚拟节点法。
3) fitting beam mode function
插值振型函数法
4) Interpolation function
插值函数
1.
Integration of fractal interpolation functions on various scales;
不同尺度下分形插值函数的积分
2.
Establishment of multi-fields in MSC Patran by interpolation functions of Matlab;
MSC Patran中基于Matlab插值函数的多场创建
3.
Some properties of a fractal interpolation function;
一种分形插值函数的若干性质
5) function interpolation
函数插值
1.
The research of the application of the function interpolation in making up the Flash animation;
函数插值在Flash动画补间中的应用研究
6) interpolating function
插值函数
1.
Error estimate about the third class of half - logarithm spline interpolating function;
关于第三类半对数spline插值函数的误差估计
2.
The asymptotic expansion term of remainder term for error of inequality distance first kind cubic spline interpolating function is advanced using interpolation method for basic spline.
利用基样条插值方法,给出非等距三次样条(Ⅰ)型插值函数余项渐近展开式。
3.
A method to form the interpolating function by using the moved least square method is introduced.
介绍了移动最小二乘插值函数的构造方法;以该函数作为加权残值法中的试函数,采用配点法求出试函数中的系数,进而得到边值问题的解;对Winkler地基上的非均匀梁和非规则板以及弹性半空间地基上的板进行了数值计算,并与理论结果、有限元法或其它数值方法进行了对比,采用总残值判断数值结果的准确度。
补充资料:Бернштейи插值法
Бернштейи插值法
Bemshtein interpolation method
反p.un℃翻插值法fBemsh触in inte甲日侧门me价川;反 p幽Te肠“a““TepnoP妞颐“o皿碱npo”eeel 在区间!一1,}}七一致收敛于函数厂(劝的代数多 项式序列,f(x)农卜1,l]上是连续的.更确切地说, 反pHllll℃益H插值法指的是代数多项式序列 艺才犷’兀(‘, P。‘f.尤1.二一址卫一一一一一~一。_、。 一n、厂,了、,,—.八二}厂 1。气,笼矢一‘入I一文厂’少 其中 不(I)又eos(n arc eos义) 是q的~多项式(Cheb产he、pol扣om走a丈s夕, .、、一。。、}~鱼二垫.) }‘刀{是插值结点;而如果k尹21、,l是任意正整数,n之2匆十八g)l,0簇r<21,;二I,,,,q,则 河梦,二刀、梦’;否则 了}了一} 月开二艺f(x步八、)、:,)一艺f(x界、,}十:,) 了扮尹二{多项式凡仃;x)的次数与使得凡(f;x)等于f(x)的那些点的个数之比是(n一l)/伪一的,当。*刀时,它趋向于21/(2卜1);如果声足够大,则这个极限任意接近1.这种插值法是C.H一反llmrl℃nH于一1男】年提出的(l1)).【补注】这种插值法在西方似乎不很熟悉但是,有一种对于[(),1】上的有界函数采用特殊的插值结点k/城火=O,…,司的众所周知的Be此htein法卜这种方法是通过丘脚阻rd抽多项式(Bernshtein polynomia{s)给出的,对于[0,l]上的有界函数f(x)构造的Eep皿卫祀‘l多项式序列氏仃;劝在了称)的每个连续点x针0、1J上收敛于少试义).如果f(x)在【o,11仁是连续的,则这个序列在!0,1}一匕一致收敛(王八x)).如果八沐)是可微的,则仔贬八义)的每个连续点上)B二(f;劝,f’林),见[AI] 这种段阳山1℃兔I法常常用来证明(关于逼近的)Wei仍抚昭s定理(Weierstrass theorem).关于这种方法的推广(单调算子定理(monotoneoperator theorem))见【A21,第3章,第3节,也可参阅函数通近线性方法(approxitnation of functions,linear methods).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条