1) base-paracompact
基-仿紧
1.
The notion of perfectly base-paracompact spaces is introduced and the following results are proved:(1) Let f:Z→Y be a perfect mapping,if Y is a perfectly base-paracompact space,then X is perfectly base-paracompact;(2)Let X is a perfectly base-paracompact.
引入了完全基-仿紧空间,并且获得了如下主要结果:(1)设f:X→Y为完备映射,Y为完全基-仿紧空间,则X是完全基-仿紧空间;(2)设X是完全基-仿紧空间,Y是紧空间,则X×Y是完全基-仿紧空间;(3)设X是完全基-仿紧空间,Y是局部紧的完全基-仿紧空间,则X×Y是基-仿紧空间。
2.
In this paper,a series of properties of base-paracompact spaces are given.
文章给出了基-仿紧空间的一系列性质,着重证明了:如果X=∏σ∈ΣXσ是λ-仿紧空间,则X是正规可遮空间当且仅当F∈∑<ω,∏σ∈FXσ是正规可遮空间。
2) perfectly base-paracompact
完全基-仿紧
1.
The notion of perfectly base-paracompact spaces is introduced and the following results are proved:(1) Let f:Z→Y be a perfect mapping,if Y is a perfectly base-paracompact space,then X is perfectly base-paracompact;(2)Let X is a perfectly base-paracompact.
引入了完全基-仿紧空间,并且获得了如下主要结果:(1)设f:X→Y为完备映射,Y为完全基-仿紧空间,则X是完全基-仿紧空间;(2)设X是完全基-仿紧空间,Y是紧空间,则X×Y是完全基-仿紧空间;(3)设X是完全基-仿紧空间,Y是局部紧的完全基-仿紧空间,则X×Y是基-仿紧空间。
3) base-countably paracompact space
基-可数仿紧
1.
This paper is made of two parts: one part is the Tychonoff infinite product properties of σ-ortho compact space; the other part,a series of properties of base-countably paracompact spaces are given.
主要研究了两部分内容:一是σ-ortho紧空间的Tychonoff乘积性;二是给出了基-可数仿紧空间的一系列性质;着重证明了:如果X=∏σ∈∑Xσ是|∑|-仿紧空间,则X是σ-ortho紧空间当且仅当F∈|∑|〈ω,∏σ∈FXσ是σ-ortho紧空间。
4) base-paracompact spaces
基-仿紧空间
5) base-paracompact mapping
基-仿紧映射
6) Base-countably paracompact
基可数仿紧
1.
2、(1) Base-countably paracompactness is an inverse invariant of quasi-perfectmappings.
本文主要研究了两部分内容:一部分是σ-ortho紧空间的Tychonoff乘积性;一部分是定义了基可数仿紧空间,并对其性质与刻画定理进行了初步研究。
补充资料:仿紧空间
仿紧空间
paracompact space
【补注】上述Stone定理属于A .H .Stone(不是M明11司1 Stone). 保守族亦称保持闭包(C10s眠p献r劝119)的族;星形加细亦称重心加细(bary比ntrlc refinements). 仿紧概念多种多样.为了叙述这些概念,需要某些覆盖概念.一个集族称为不相交的(构。int),如果它的元素互不相交.互不相交覆盖的可数并称为叮不相交覆盖(。一明。诚coVenl唱).空间X的点有限覆盖y是指每个xcX均含于下的至多有限多个元素中.点有限覆盖的可数并称为。点有限覆盖.覆盖下称为星形有限的(star一j丽抚)(星形可数的)(star-coun七lble)),如果7的每个元素均至多与有限多个(可数多个)其他元素相交. 一个空间称为强仿紧的(strong】y pan泣以〕m印ct),如果其每个开覆盖均有星形有限的开加细;一个空间称为弱仿紧的〔a亚紧的)(weakly paracomPact(‘一优-taconlpact)),如果其每个开覆盖均有点有限(口点有限)的开加细.屏蔽(s掀ned)空问是指每个开覆盖均有a互不相交的开加细.遗传仿紧(he代xljt创yp田笼泣comPa以)空间是指每个子空间也是仿紧空间.空间称为星形正规(star一non刀al)空问或星形仿紧(star-p~olllPact)空间,如果每个开覆盖均有开的星形加细.可数仿紧(countablyp~。mpact)空间是指每个开覆盖均有局部紧的开加细.空间称为T仿紧(卜pardcolnPact)空间,T是一个基数,如果基数(T的每个开覆盖均有局部紧的开加细.至于更多的详情、这些概念彼此的关系以及其他的拓扑性质见【2].仿紧性本身仍然是核心概念. 如上所述.仿紧性是一个非常自然而有用的性质.然而,很遗憾,这个性质井不由子空间及乘积所继承.不过,就另一种涉及邻近及收敛思想的概念(不是拓扑空间),即所谓近性空间(nearlless sPaCes)而言,这个缺陷就不存在了,见工Al]及拓扑结构(toP’)logical、t~)至于“在亡ech意义下完全”的概念见完全空间(comPlete sPace).仿紧空间〔,.门”钾ct明ce;n叩姗M。呱uoe up。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条