说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Krasnoselskii不动点指数定理
1)  Krasnoselskii fixed-point index theorem
Krasnoselskii不动点指数定理
1.
By using Krasnoselskii fixed-point index theorem, a class of nonlinear functional differential equation x′(t)=a(t)g(x(t))x(t)-λ sum from i=1 to n(f_i(t,x(t-T_i(t)))) is obtained,and at least there are the sufficient conditions to guarantee the existence of two periodic positive solutions, and some corresponding results in existing literatures are expanded.
利用Krasnoselskii不动点指数定理,得到一类带有参数的非线性泛函微分方程x′(t)=a(t)g(x(t))x(t)-λ sum from i=1 to n(f_i(t,x(t-T_i(t)))),至少存在两个周期正解的充分条件,推广了已有文献中的相关结果。
2)  Krasnoselskii fixed point theorem
Krasnoselskii不动点定理
1.
By using Krasnoselskii fixed point theorem of cone map,some existence and multiplicity result of periodic solutions are obtained.
用Krasnoselskii不动点定理研究了变系数二阶奇异非线性常微分方程u″(t)+a(t)u(t)=f(t,u(t)),在更一般的条件下获得了该微分方程的正ω-周期解的存在性和多重性结果。
2.
By using Krasnoselskii fixed point theorem,we studied the existence of multiple positive periodic solutions for a class of functional differential equations with impulses.
利用Krasnoselskii不动点定理,讨论一类带参数的泛函脉冲微分方程多个周期正解存在的充分条件,在f(x)和Ik(x)均为非超线性和非次线性的条件下,得到该类微分方程多个周期正解存在的一些新结果。
3.
The paper is concerned with the existence of positive and multi-positive solutions for a nonlinear second order three-point boundary value problems of differential equation at resonance by using Krasnoselskii fixed point theorem.
最后,利用Krasnoselskii不动点定理在f满足一定增长性条件下获得了正解以及多个正解8的存在性定理。
3)  Krasnoselskii fixed point theorem
Krasnoselskii锥不动点定理
1.
Sufficient conditions are established for the multiplicity of positive solutions of this problem by using Krasnoselskii fixed point theorem in cones.
通过应用Krasnoselskii锥不动点定理,建立了该问题存在多个正解的充分条件,推广并丰富了以往文献的一些结论。
4)  Krasnoselskii type fixed point theorem
Krasnoselskii型不动点定理
5)  Krasnoselskii's fixed point theorem
Krasnoselskii不动点定理
6)  Kras-noselskii's fixed point theorem
Krasnoselskii S不动点定理
补充资料:Borel不动点定理


Borel不动点定理
Borel fixed - point theorem

  B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条