1) fixed point index theorem
不动点指数定理
1.
This paper establishes the existence of multiple positive solutions of a class of nonlinear three-point boundary value problems by means of the fixed point index theorem on cones.
利用锥映射的不动点指数定理,建立了一类三点边值问题多个正解的存在性定理。
2.
This paper establishes the existence of multiple positive solutions of a class of singular nonlinear three-point boundary value problems by means of the fixed point index theorem on cones.
利用锥映射的不动点指数定理,建立了一类奇异三点边值问题多个正解的存在性定理。
2) fixed-point index theorem
锥上不动点指数定理
3) Krasnoselskii fixed-point index theorem
Krasnoselskii不动点指数定理
1.
By using Krasnoselskii fixed-point index theorem, a class of nonlinear functional differential equation x′(t)=a(t)g(x(t))x(t)-λ sum from i=1 to n(f_i(t,x(t-T_i(t)))) is obtained,and at least there are the sufficient conditions to guarantee the existence of two periodic positive solutions, and some corresponding results in existing literatures are expanded.
利用Krasnoselskii不动点指数定理,得到一类带有参数的非线性泛函微分方程x′(t)=a(t)g(x(t))x(t)-λ sum from i=1 to n(f_i(t,x(t-T_i(t)))),至少存在两个周期正解的充分条件,推广了已有文献中的相关结果。
4) the cone's fixed point index theorem
锥不动点指数定理
5) fixed point index theorem
不动点指标定理
1.
By using a well-known fixed point index theorem,we obtain the existence,multiplicity and nonexistence of positive periodic solution(s) to this equation.
利用一个著名的不动点指标定理,获得了该方程周期正解的存在性、多重性和不存在性。
6) fixed point index theory
不动点指数理论
1.
In this paper, by using the fixed point index theory, we obtain an existence criteria for multiple positive solutions of semi-autonomous nonlinear neutral difference equation.
构造了准自制非线性中立型差分方程的多正解存在性的一个充分性判据,并利用不动点指数理论,证明了这个差分方程多正解的存在性。
2.
by fixed point index theory, multipli Ci Ty question of solutions to superlinear operator equations in ordered banach spa Ce is discussed.
通过不动点指数理论 ,讨论了一类超线性算子方程的多重解问题 。
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条