说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 比例方程组
1)  ratio equation group
比例方程组
1.
To implement this method,the concept of ratio equation group (a special system of linear equations) is presented and an algorithm with linear time-space complexity is devised to find its simplest solution.
为实现该方法,提出了比例方程组(一种特殊线性方程组)的概念并设计了求解方程组最简解的线性时空复杂度的高效算法。
2)  pantograph equation
比例方程
1.
H_α-stability of modified Runge-Kutta methods with variable stepsize for neutral pantograph equation;
中立型比例方程变步长改进的Runge-Kutta方法的H_α-稳定性(英文)
3)  Propotional equations method
比例方程法
4)  linear system of pantograph equation
线性比例延迟微分方程组
1.
The asymptotic stability of Rosenbrock methods with variable stepsize for the linear system of pantograph equation was discussed, and it is shown that strictly stable at infinity Rosenbrock method with variable stepsize can preserve the asymptotic stability of underlying linear system.
讨论用一类变步长Rosenbrock方法求解线性比例延迟微分方程组的渐近稳定性,证明了在无穷远点严格稳定的变步长Rosenbrock方法能够保持原线性系统的渐近稳定性。
5)  stochastic pantograph differential equations
随机比例方程
1.
To establish the LaSalle-type asymptotic convergence theorem for the solutions of stochastic pantograph differential equations.
建立随机比例方程解析解的LaSalle-型渐进收敛定理,据此得到随机比例方程解析解渐进稳定的条件,给出一个例子。
6)  pantograph differential equation
比例尺微分方程
1.
This paper deals with the stability properties of the analytic and numerical solutions of nonlinear systems of pantograph differential equations with many delays.
获得了比例尺微分方程稳定及渐近稳定的充分条件,同时研究了隐式欧拉方法的稳定性质。
补充资料:拟线性双曲型方程和方程组


拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems

尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条