说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 比例延迟微分方程
1)  nonlinear pantograph equation
比例延迟微分方程
1.
This paper deals with the numerical stability of implicit Euler method for nonlinear pantograph equation in which constant stepsize and variable stepsize are applied.
讨论非线性比例延迟微分方程隐式Euler法的数值稳定性,其中步长采用定步长和变步长两种方式。
2)  multi-pantograph equation
多比例延迟微分方程
1.
This paper is concerned with the stability of Rosenbrock methods with variable stepsize applied to multi-pantograph equation y′(t)=λy(t)+lk=1μ_ky(q_kt),λ,μ_k∈C,0<q_l<…<q_2<q_1<1.
主要讨论了用一类变步长Rosenbrock方法求解多比例延迟微分方程y′(t)=λy(t)+∑lk=1μky(qkt),λ,μk∈C,0
3)  Stochastic pantograph delay equation
随机比例延迟微分方程
4)  linear system of pantograph equation
线性比例延迟微分方程组
1.
The asymptotic stability of Rosenbrock methods with variable stepsize for the linear system of pantograph equation was discussed, and it is shown that strictly stable at infinity Rosenbrock method with variable stepsize can preserve the asymptotic stability of underlying linear system.
讨论用一类变步长Rosenbrock方法求解线性比例延迟微分方程组的渐近稳定性,证明了在无穷远点严格稳定的变步长Rosenbrock方法能够保持原线性系统的渐近稳定性。
5)  nonlinear pantograph equations
非线性比例延迟微分方程
1.
Linear θ ? methods with variable stepsize are applied to nonlinear pantograph equations and the conditions for the presented methods to be asymptotic stability are obtained.
应用变步长的线性θ -方法于非线性比例延迟微分方程,获得了其渐近稳定的条件。
6)  pantograph equations of neutral type
中立型比例延迟微分方程
补充资料:微分方程的差分方程逼近


微分方程的差分方程逼近
approximation of a differential equation by difference equations

  微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条