1) Connectionleft and night
左右连通
2) right/left-handed passband
左右手通带
3) universal design for left and right hands
左右手通用
4) left-connected
左连通性
1.
Then we work out the distinguished involutions of left cells in the two-sided cells of the arBne Weyl groups of type E with a-value 4, and we prove that these left cells are all left-connected, which verify a conjecture of Lu.
本文利用时俭益给出的求仿射Weyl群左胞腔代表元的方法,给出了仿射Weyl群(?)_6的a-值不大于11的所有双边胞腔中的左胞腔代表元,构造了它们的左胞腔图;同时本文还给出了仿射Weyl群(?)_7和(?)_8的a-值等于4的双边胞腔中的左胞腔代表元;对于a-值等于4的E型仿射Weyl群的双边胞腔,本文还给出了它们的左胞腔的特异对合元,并且证明了这些左胞腔的左连通性。
2.
We provethat all the left cells in W_(5) and W_(6)~1 are left-connected,verifying a conjecture ofLusztig in our case.
本文主要研究的是仿射Wleyl群a-值等于5的双边胞腔W_(5)和a-值等于6的双边胞腔W_(6)~1中的左胞腔,找出了双边胞腔W_(5)和W_(6)~1中的左胞腔代表元,画出了它们的左胞腔图,并证明了W_(5)和W_(6)~1中的左胞腔的左连通性和得到了左胞腔的特异对合元。
5) right-continuous and left-limit function
右连左极函数
1.
This paper gives the definition of integration of right-continuous and left-limit function under It integration case,meanwhile,discusses preliminarily the basic properties of the integration which they might realize many good applications.
在It积分框架下,给出了右连左极函数关于有界变差函数的积分定义,初步讨论了这种积分的一些有实际应用意义的基本性质。
2.
The extended Gronwall inequalities with traditional forms are given,and a type of Gronwall inequality on integration of right-continuous and left-limit functions is also provided in this paper.
给出了传统意义下的Gronwall不等式的推广形式,并且给出了在右连左极函数积分下的一种Gronwall不等式。
6) cadllag process
右连左极过程
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条