1) eventually equi-left (right)-continuity
最终等度左(右)连续
2) one-two punch
连续左右猛击
3) one-two straight
连续左右直拳
4) equicontinuity
等度连续
1.
Continuity,uniform continuity,uniform convergence and equicontinuity are very important qualities of functions or sequence of functions.
连续、一致连续、一致收敛和等度连续是函数或函数列非常重要的性质。
2.
For the sake of using the non-standard analysis method to study the general mathematics problems,the nonstandard characteristics of topological equicontinuity,equicontinuity and even continuity in the case of enlargement model are given.
为了用非标准分析方法研究一般的数学问题,在扩大模型下,应用单子理论给出了拓扑等度连续。
3.
In this thesis, we study mainly the sensitivity with respect to subshift of finitetype, measure-theoretical sensitivity, measures of scrambled sets, measure-theoreticaleverywhere chaos and measure-theoretical equicontinuity via Furstenberg families.
本文讨论了Furstenberg族意义下的有限型子转移的敏感性、测度理论敏感性、攀援集的测度、测度理论处处混沌与测度理论等度连续等问题。
5) equicontinuous
[,i:kwikən'tinjuəs]
等度连续
1.
Supposed X and Y are both topological vector spaces and X is of the second category, if0 is pointwise bounded, then must be equicontinuous.
设X,Y为拓扑向量空间,X是第二纲的,若AB0逐点有界,则A是等度连续的。
2.
In this paper,use equicontinuous of function sequence obtain the necessary and sufficient condition of the uniform convergence sequence of continuous functions in bounded closed interval,generalize Dini theorem.
判别函数列一致收敛的方法有函数列一致收敛定义、Cauchy一致收敛准则、limn→∞supx∈D|fn(x)-f(x)|=0及Dini定理,本文由函数列的等度连续性,可得出几个有界闭区间上连续函数列一致收敛的充要条件,推广了Dini定理。
3.
In this paper, the following two properties of compact system be proved; (1) A factor of a minimal system is minimal; (2) A factor of an equicontinuous system is equicontinuous system.
证明了紧致系统的2个性质:1)极小系统的因子是极小的;2)等度连续系统的因子是等度连续的。
补充资料:等度连续性
等度连续性
equkoatirarity
等度连续性[仰血期咐画灯;po.oeTeneo.a,.en衅叫一HocT司,函数集的 和连续函数集的紧性概念密切相关的一个概念.设X和Y是紧距离空间,C(X,Y)是从X到Y的连续映射的集合,集合DC=C(X,Y)称作是等度连续的(叹山。n石nUO留),如果对任意的£>O,存在占>0,使对一切x,,xZ任X,feD,从巧(x:,xZ)(占可推出p,(f(x,),f(xZ))(£.D的等度连续性等价于D在e(x,Y)中相对紧宇),此时e(x,y)被赋予距离 P(f,g)=moxP;(f(x),g(x)); 戈〔X这就是内雀1人一怂印五定理(为1汤一怂田h山图n改n).等度连续性的思想可以移植到一致空间.【译注】*)此句话前应加一句“当D有界时,”. 余庆余译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条