1) generalized path coalgebra
广义路余代数
1.
We firstly introduce the concept of generalized path coalgebra through assigning a k-coalgebra to each vertex of a given quiver.
通过将箭图的每个顶点放置一个k-余代数,首先引进了广义路余代数的概念,其次给出了广义路余代数的一些基本性质,还讨论了同构问题。
2) generalized path algebra
广义路代数
1.
In this paper, we discuss the properties of digraphs for primitive path algebra and (right) Goldie path \{algebra\}; and prove that Brown\|McCoy radical of the generalized path algebra does not coincide with the Jacobson radical in general.
讨论了有向图的几何性质和其路代数的代数性质之间的关系 ,解决了路代数中若干遗留问题 ,给出本原路代数、(右 ) Goldie路代数的有向图特征 ,证明了广义路代数的 Brown-Mc Coy根与它的 Jacobson根是不重合的 。
2.
Proved that the category of finite representations of generalized path algebra R Q,A is equivalent to the category of finite dimension modules with functor construction method,this extends the conclusion of path algebras.
利用构造函子方法证明了广义路代数RQ,A的有限表示范畴等价于它的有限维模范畴,从而推广了路代数的结果。
3) generalized algebraic complement
广义代数余子式
4) path coalgebra
路余代数
1.
In this paper,graph properties of simple undirected Hopf quivers and the relation between path algebras and path coalgebras are discussed.
本文研究了简单无向Hopf箭图的图论性质以及路代数与路余代数的关系。
2.
In this paper, the quantum algebra Uq(sl2) as well as the superalgebra Uq(osp(2, 1)) are realized by the quotient of algebra on double path coalgebra ■.
在q不为单位根时,本文用无限简图A∞∞的double路余代数■的商代数同时实现了量子代数Uq(sl2)以及量子超代数Uq(ops(2,1))。
3.
This paper is devoted to studying the path coalgebra from the view of locally finite category ,the representation of Q, the comodule over the path coal.
本文致力于从局部余模,有限范畴的角度研究路余代数P(C)=KQ~c(以下简称P(C)),其上的余模和Q的表示。
5) path coalgebras
路余代数
1.
According to the properties of path coalgebras,using the definition and methods of calculating Hochschild cohomology given by Doi Y,as well as the researching methods of Hochschild cohomology in algebras,we study the coradicals of path coalgebras,the Hochschild cohomology of path coalgebras and quotient coalgebras of path coalgebras.
根据路余代数的性质,利用Hochschild上同调的定义与计算方法,借鉴代数中的Hochschild上同调的研究方法,研究了路余代数的余根、路余代数及路余代数的商余代数的Hochschild上同调。
2.
In the third chapter, we study a special pointed coalgebras-path coalgebras.
本文第三章研究了一类特殊的Pointed余代数-路余代数。
6) Co-path Hopf algebra
余路Hoof-代数
补充资料:代数余子式
代数余子式
(algebraic) cofoctor
代数余子式【(algebraic)即血d匕r;呱响卿洲心搜助uo几.日川.],子式(minor)M的 数 (一l丫十‘detA了卜老,这里M为某n阶方阵A的带有行i,,…,几与列j,,一人的k阶子式;detA式’君是从A划去M的所有行与列后得到的n一k阶矩阵的行列式;s二i,十…十i*,‘习、十…十人·下述La禅aCe窄浮(L aPlaCe‘heorem)成立:如果在一个”阶行列式中任意固定r行,则对应于这些固定行的所有r阶子式与它们的代数余子式的乘积的和等于这个行列式的值.晰注】此LaPlaCe定理通常称为行烈莽的LaPla“尽开(加Pla.develoPment of a determinant).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条