1) discrete Hamiltonian systems
离散Hamiltonian系统
1.
The existence of multiple periodic solutions is investigated for second order discrete Hamiltonian systems with a parameter.
利用变分原理和Clark定理,研究了带参数的二阶离散Hamiltonian系统的多重周期解,得到了此类方程周期解个数的下界估计。
3) Hamiltonian systems
Hamiltonian系统
1.
An existence theorem of even homoclinic orbits is obtained for a class of second order nonautonomous Hamiltonian systems with symmetric potentials by approximating it by solutions of boundary problem.
利用临界点理论中的山路引理,采用零边值问题解逼近的方法,证明了一类对称超二次二阶Hamiltonian系统非平凡偶同宿轨的存在性。
4) Hamiltonian energy system
Hamiltonian能量系统
6) singular Hamiltonian system
奇异Hamiltonian系统
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条