1) Discrete time system family
离散系统族
2) discrete-time delay system family
离散时滞系统族
3) discrete system
离散系统
1.
On optimal iterative learning control for discrete systems;
一类离散系统最优迭代学习控制方法
2.
Demonstration on decomposing a start - state and response of discrete system;
离散系统起始状态分解及其响应可分性的证明
3.
Inverse vibration problem for the discrete system of a rod;
杆的离散系统的振动反问题
4) discrete systems
离散系统
1.
Switching control of a class of linear MIMO discrete systems;
一类线性MIMO离散系统的切换控制方法
2.
Chattering-free sliding-mode control for discrete systems with time-delay;
具有控制时滞的离散系统的无抖振滑模控制
3.
Discusses hybrid state feedback guaranteed cost control with quadratic stability for a class of uncertain discrete systems of which the state matrix contains time-varying uncertainties.
针对一类不确定离散系统,对二次稳定保成本控制问题进行了研究。
5) discrete-time systems
离散系统
1.
Optimal damping of sinusoidal disturbances in discrete-time systems with time-delays;
时滞离散系统正弦扰动的最优抑制
2.
H-infmity measurement-feedback control for discrete-time systems with multiple delayed measurements;
离散系统多步观测时滞的H_∞输出反馈控制
3.
Output feedback guaranteed cost control for uncertain discrete-time systems;
不确定离散系统的输出反馈保性能控制
6) discrete-time system
离散系统
1.
Based on the passive analysis and aiming at the discrete-time systems in which both state and output equations involve the control,the condition that is admissible and strictly passive for the closed-loop system is also analyzed via LMI under the control of state feedback,and the desi.
在无源分析的基础上,针对状态方程和输出方程均含有控制的离散系统,利用矩阵不等式分析状态反馈控制下闭环系统容许且严格无源的条件,同时给出了控制器的设计方法。
2.
This paper considers the problem of estimation of robust stability bounds for discrete-time systems.
研究了结构化扰动下离散系统的稳定边界估计问题。
3.
The problem of robust stabilization for uncertain discrete-time system made ofseveral subsystems with delay is considered.
考虑具有时滞的不确定离散系统的鲁棒稳定化问题,对每个子系统应用稳定化的状态反馈控制,利用特征根轨迹稳定的特性以及Gershgorin定理,给出了参数扰动界,获得了系统渐近稳定的充分条件,推广了文献[6]的主要结果。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条