说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> γ-算子
1)  γ-operator
γ-算子
2)  Γoperators
Γ算子
1.
We give a characterization of the global approximation of derivatives f (l) by linear combinations of Γ-operators G (l) n,r in weighted L p-norm by using of the equivalence between the weighted Ditzian-Totik modulus of smoothness and the weighted Ditzian-Totik K-functional.
本文利用带权情形Ditzian Totik无滑模与对应的K 泛函的等价Lp 度量中给出了Γ算子线性组合导数的全局逼近的特征刻画 。
3)  type of γ operator
γ型算子
1.
The Definition of the type of γ operator and h-quasi-total Collectivelly Compact operator is given,and the regular values of approximation for two classes of operator are discussed.
给出了γ型算子和一类幂级数的拟总体列紧算子的定义,并对这两类算子逼近的正则值进行了讨论。
4)  γ-radonifying operators
γ-radonifying算子
1.
Meanwhile,γ-radonifying operators play an important role in the study of the linear stochastic Cauchy problem.
利用R -有界性代替一致有界性,能使得算子理论和调和分析很多经典结果从传统的Hilbert空间推广到了Banach空间,同时,γ-radonifying算子在研究线性随机Cauchy问题中起着非常重要的作用。
2.
This paper introduces γ-radonifying operators and the notions and some important properties of R-boundedness.
介绍了γ-radonifying算子,R-有界的基本概念和一些重要的性质。
5)  γ-condensation operator
γ-凝聚算子
6)  γ-quasi-subadditive operator
γ-拟次加算子
1.
In quasi-normed space, the limit of normed γ-quasi-subadditive operator sequence or normed γ-max-quasi-subadditive operator sequence being equi-continunous operator sequence in quasi-normed space is bounded in any quasi-bounded set, and its normed γ-quasi-subadditivity or normed γ-max-quasi-subadditivity is invariable.
证明了在赋准范空间上等度连续的按范γ-拟次加算子列的极限,和等度连续的按范γ-最大拟次加算子列的极限,在任何拟有界集上是数值有界的,及其按范γ-拟次加性和按范γ-最大拟次的不变性。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条