说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> γ-最大拟次加算子
1)  γ-max-quasi-subadditive operator
γ-最大拟次加算子
1.
In quasi-normed space, the limit of normed γ-quasi-subadditive operator sequence or normed γ-max-quasi-subadditive operator sequence being equi-continunous operator sequence in quasi-normed space is bounded in any quasi-bounded set, and its normed γ-quasi-subadditivity or normed γ-max-quasi-subadditivity is invariable.
证明了在赋准范空间上等度连续的按范γ-拟次加算子列的极限,和等度连续的按范γ-最大拟次加算子列的极限,在任何拟有界集上是数值有界的,及其按范γ-拟次加性和按范γ-最大拟次的不变性。
2)  γ-quasi-subadditive operator
γ-拟次加算子
1.
In quasi-normed space, the limit of normed γ-quasi-subadditive operator sequence or normed γ-max-quasi-subadditive operator sequence being equi-continunous operator sequence in quasi-normed space is bounded in any quasi-bounded set, and its normed γ-quasi-subadditivity or normed γ-max-quasi-subadditivity is invariable.
证明了在赋准范空间上等度连续的按范γ-拟次加算子列的极限,和等度连续的按范γ-最大拟次加算子列的极限,在任何拟有界集上是数值有界的,及其按范γ-拟次加性和按范γ-最大拟次的不变性。
3)  γ-quasi-subadditive
γ-拟次加
1.
Then the uniform boundedness of normed generalized γ-quasi-subadditive(normed generalized γ-maximum-quasi-subadditive) and normed generalized binomial γ-quasi-subadditive generalized equicontinuous operator families are proved in quasi-normed space.
先提出了广义等度连续的概念,然后证明了在赋准范空间上按范广义γ-拟次加(按范广义γ-最大-拟次加)的广义等度连续算子族和按范广义二项γ-拟次加的广义等度连续算子族的一致有界性。
4)  a family of generalized normed γ-quasi subadditive operators
广义按范γ-拟次加算子族
5)  binomial γ-quasi-subadditive
二项γ-拟次加
1.
Then the uniform boundedness of normed generalized γ-quasi-subadditive(normed generalized γ-maximum-quasi-subadditive) and normed generalized binomial γ-quasi-subadditive generalized equicontinuous operator families are proved in quasi-normed space.
先提出了广义等度连续的概念,然后证明了在赋准范空间上按范广义γ-拟次加(按范广义γ-最大-拟次加)的广义等度连续算子族和按范广义二项γ-拟次加的广义等度连续算子族的一致有界性。
6)  maximal operator
最大算子
补充资料:最大的最大收益值准则
分子式:
CAS号:

性质: 也称最大的最大收益值准则。不确定型决策准则之一。其方法是:首先找出各方案的最大收益值,然后选择这些最大收益值中最大者所在的方案作为最满意方案。这个准则采取乐观主义态度,把方案最大收益值(或最小损失值)的自然状态,作为必然出现的自然状态采看待,从而把不确定型决策问题化为确定性决策问题来处理。选择最大收益值中最大的方案(对损失值来说就是选择最小损失值中最小的方案)作为最满意的方案,即取“最有利中之最有利”方案,所以亦称为“乐观的决策准则”。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条