1) Global asymptotic stability
大范围渐近稳定性
1.
This paper presents a kind of neural network models for solving quadratic minimax problems with constraints, and shows its global asymptotic stability by using LaSalle invariant principle.
本文提出一种求解约束二次Minimax问题的神经网络模型 ,给出了它的Lyapunov能量函数 ,运用LaSalle不变性原理证明了它的大范围渐近稳定性 ,作为应用考察了L1范数极小化问题 。
2) stochastic asymptotically stability in the large
大范围随机渐近稳定性
1.
This article discusses the solution s stochastic stability and stochastic asymptotically stability in the large of some linear volterra stochastic integral equation,and gives the criteria of two stabilities by a transpormation.
讨论了一类线性Volterra型随机积分方程解的随机稳定性及大范围随机渐近稳定性,利用一个变换得到了该类方程解的两种稳定性的判据。
3) globally uniformly asymptotic stability
大范围一致渐近稳定性
1.
With the aid of Lyapunov functions,this paper presents a series criteria about the globally uniformly asymptotic stability of second order differenc equations with variable coefficents.
在差分方程中用类比法构造李雅普诺夫函数,对于二阶变系数差分方程的大范围一致渐近稳定性,给出了一系列判定定理,所得的结果推广了Jury判据。
4) global asymptotic stability
大范围一致渐近稳定
1.
The global asymptotic stability of one kind of difference equations with variable coefficients;
一类变系数差分方程组的大范围一致渐近稳定性
5) large range gradual stability
大范围渐过稳定
6) Asymptotical stability
渐近稳定性
1.
Criteria on asymptotical stability of Cohen-Grossberg neural networks with continuously distributed time-delay
连续分布时滞Cohen-Grossberg神经网络渐近稳定性准则
2.
n this paper, some necessary and sufficient conditions of asymptotical stability of linear singular systems are presented, and some asymptotical stability criterions are given according to the equivalent systems and the equivalent transforms, and the regularity, attractivity and free_impulse of linear singular systems are considered.
在对广义线性系统正则性、吸引性和无脉冲性研究的基础上,提出广义线性系统平衡态渐近稳定的几个充分必要条件,给出了根据等价系统和等价变换判别广义线性系统渐近稳定性的几个准则,并用具体例子说明了这些准则的应用。
3.
The problem of the globally asymptotical stability of recurrent neural networks with time varying delay is investigated.
研究了带时变时滞的递归神经网络的全局渐近稳定性。
补充资料:渐近稳定解
渐近稳定解
asymptotically - stable solution
渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条