说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 第一基本微分形式
1)  first fundamental forms
第一基本微分形式
2)  first fundamental differential form of surface
曲面的第一微分基本形式
3)  second fundamental differential form
第二基本微分形式
4)  third fundamental differential form
第三基本微分形式
5)  first fundamental form
第一基本形式
6)  differential form of the first kind
第一种微分形式
补充资料:第一基本形式


第一基本形式
first fundamental farm

  第一基本形式【6城血血肠m团回肠肋.;nep.a,‘一a月pa-T“,Ha“中opMa],摩量形式(此苗c form),曲面的 曲面上用坐标的微分表出的一个二次型,它确定了曲面在给定的一点的邻域中的内蕴几何. 设曲面用方程 r=r(u,v)来定义,这里u和v是曲面上的坐标,而 dr=r。d“+r。dy是位置向量r从点M移动到一无限邻近点M,时沿所选方向d“二dv的微分(见图l), 座矛> 图l弧MM’的长度的增量的线性主部的平方能用微分dr的平方来表出: I=ds’=dr’“r:du,+Zr。r。咖dv+r云内2,且称之为曲面的第一基本形式.第一基本形式的系数通常表为 E=r:,r=(r。,r。),G二r:,或者以张量记号写为 JrZ=g一duZ+2口12d“dy+922 dv2.张量乐,称为曲面的等丁摹夺琴旱(俪‘几m山此刀园~)或摩鼻苹量(n犯创c让们sor)·第一基本形式在曲面上的正则点处为正定形式: 五G一FZ>0.第一基本形式表征了曲面的度量性质:能运用第一基本形式的知识去计算曲面上的弧长: 、_i_坛/丝、2、,;业业、。z坐丫、,. 忿丫又dtZ一dtdt一戈dt少这里t是曲线上的参数;曲面上曲线的交角: 尸尹一、、 cos(dr占r)= _Eduj舰+F(du占v+dy占u)+Gdu占v 一一———一, 寸£Ju‘+2脑山+侧。’丫E占:,+ZF占:占。+G占v,这里血:dv和占u:占v是曲线的切向量的方向〔见图2);曲面上区域的面积:。一丁丁抓丽丁了‘“‘。 蒸薰犷、 图2第一基本形式的系数的形状本质上依赖于坐标系的选取·第一基本形式具有所谓在正交坐标系下的平卒形式(。找ho即na] form) E(u,v)duZ+G(。,v)dy,,在半一测地坐标系下的典范形式(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条