1) saddle-point theory
鞍点理论
1.
Duality and saddle-point theory for a class of E_(b,ρ)-convex semi-infinite programming;
一类E_(b,ρ)-凸半无限规划的对偶性及鞍点理论
2) saddle point theorem
鞍点定理
1.
By using the least action principle and the saddle point theorem in Critical Point theory,the existence theorems for periodic solutions of a class of nonautomomous second-order systems are obtained.
分别利用极小作用原理及鞍点定理在势泛函为一次线性泛函和次二次泛函之和的条件下讨论了一类非自治二阶Hamilton系统周期解的存在性。
2.
Two saddle point theorems were proven in according to the H α conjugate map and its properties.
借助一类非闭非凸的 α-较多锥 ,对多目标规划问题引进 Hα- Lagrange映射及其鞍点的概念 ,利用 Hα-共轭映射及其性质得到了两个鞍点定理 ,并对含有不等式约束的多目标规划问题建立了鞍点定
3.
The existence of periodic solutions for second order systems (M(t)u′)′+Au+F(t, u)=h(t), u(0)-u(T)=u′(0)-u′(T)=0, is dicussed with sublinear nonlinearity, by using the saddle point theorem, the problem has at least one periodic solution.
讨论了一类二阶系统(M(t)u′)′+Au(t)+ F(t,u(t)=h(t),u(0)-u(T)=u′(0)-u′(T)=0,在非线性项满足次线性条件下周期解的存在性,利用鞍点定理得到该问题至少存在一个周期解。
4) Rabinowitz's saddle point theorem
Rabinowitz鞍点定理
5) the generalized saddle point theorem
广义鞍点定理
1.
Some multiplicity theorem are obtained for periodic solutions of a class of nonautonomous second order systems by using the generalized saddle point theorem.
利用广义鞍点定理讨论了一类非自治二阶系统的多重周期
6) saddle
[英]['sædl] [美]['sædḷ]
鞍点
1.
The center-weak focus of a general system of degree “n” was transformed into a problem of generalized center-weak saddle.
将一般n次中心—细焦点系统,转化为广义中心—细鞍点系统。
2.
A problem of center-weak focus system of degree n(n denotes odd numbers) in qualitative theory of differential equation is transformed into the problem of generalized center-weak saddle system by a generalized transformation of generalized polar coordinates,which offers the calculation formula of eleven-order weak saddle values.
采用广义极坐标变换,将微分方程定性理论中的齐n次(n为奇数)中心———细焦点系统,转化为广义中心———细鞍点系统,给出了该系统的第11阶细鞍点量计算公式。
3.
We discuss the types of the equilibrium points,Hopf bifurcation,saddle separate relation place.
讨论平衡点的类型,Hopf分支问题,鞍点分界线的相对位置,极限环的存在性。
补充资料:鞍点
分子式:
CAS号:
性质:数学上同时具备极大与极小性质的点。应用于三维势能面及裂变核势能曲面上,与反应坐标相垂直的方向上过渡态位于势能的最低点,发生对称伸缩振动。在沿反应坐标方向上过渡态位于势能的最高点,发生不对称伸缩振动。过渡态在势能面所处的这一点即势能面的鞍点。
CAS号:
性质:数学上同时具备极大与极小性质的点。应用于三维势能面及裂变核势能曲面上,与反应坐标相垂直的方向上过渡态位于势能的最低点,发生对称伸缩振动。在沿反应坐标方向上过渡态位于势能的最高点,发生不对称伸缩振动。过渡态在势能面所处的这一点即势能面的鞍点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条