说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 环Zn上的椭圆曲线
1)  elliptic curves over Z n
环Zn上的椭圆曲线
2)  elliptic curves over Zn
Zn上的椭圆曲线
3)  conic curve over Z n
环Zn上的圆锥曲线
1.
This article proposes a proxy blind signature scheme based on conic curve over Z n,and its security is also analyzed.
文中提出了一个基于环Zn上的圆锥曲线的代理盲签名,并对该方案做了分析。
4)  conic curve over Zn
环Zn上圆锥曲线
5)  Elliptic curve over GF(2~m)
GF(2~m)上的椭圆曲线
6)  Group structure on elliptic curve
椭圆曲线上的群结构
补充资料:超椭圆曲线


超椭圆曲线
hyper-elliptic curve

  超椭回曲线【hy脚一面吵~:r.皿p”。皿T。,eeKa,KP二a,] 仿射曲线尹“f(x)的非奇异射影模型,这里f(x)是一个没有重根的次数为奇数n的多项式(偶次数2k的情形可归结为奇次数2火一1的情形).超椭圆曲线的函数域(超椭圆函数域)是有理函数域的二次扩张;从这个意义上讲它是除了有理函数域之外的最简单的代数函数域.超椭圆曲线由二次除子的一维线性系川的存在性所判定,这样的线性系定义了一个该曲线到射影直线上的二次态射.上述超椭圆曲线的亏格为切一1)/2,因此对不同的奇数。这些超椭圆曲线不双有理等价.当n二l时是射影直线;n=3时是椭圆曲线.按惯例亏格O和l的曲线不称为超椭圆曲线.在亏格g>1的超椭圆曲线上正则微分形式之比生成一个亏格O的子域;这一性质完全刻画了超椭圆曲线,【补注】正文中给出的定义(第一句话)仅在特征不为2时成立.一般情形超椭圆曲线可定义为有理曲线(扭由naJ clln尼)的一个二重覆叠(亦见,.曲面(Cove-力飞s班face)).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条