1) generalized solution for integral partial differential equations
积分偏微分方程的广义解
2) generalized vector partial differential equation
广义矢量偏微分方程
1.
A new method for solving a generalized vector partial differential equation is given .
对一类广义矢量偏微分方程提出一种新的解法 ,将一类广义矢量偏微分方程分解成无旋和无散两部分 ,借助于Bohren分解法 ,应用矩量法导出了用通常的Hanson矢量波函数表示的一类广义矢量偏微分方程的并矢格林函数的普遍形式 应用这一方法可使一类广义场矢量问题的求解得以普遍解
4) Partial integro-differential equation
偏积分微分方程
1.
Stability of spatial half discretization for a partial integro-differential equation with a weakly singular kernel;
一类带弱奇异核的偏积分微分方程空间半离散的稳定性
2.
Stability of second order backward difference for a partial integro-differential equation with a weakly singular kernel
一类带弱奇异核的偏积分微分方程二阶向后差分格式的稳定性
3.
In this paper, the second order fully discrete difference method for a partial integro-differential equation is considered.
本文给出了数值求解一类偏积分微分方程的二阶差分全离散格式。
5) integro-partial differential equation
积分-偏微分方程
6) integro-partial differential equation
积分偏微分方程
1.
Memory term and initial boundary value problem in a category of integro-partial differential equations is researched.
考虑带有记忆项的一类积分偏微分方程的初边值问题,采用积分方程理论及Faedo-Galerkin方法,通过积分估计证明了此类方程的初边值问题正则解的存在性。
补充资料:偏微分方程的基本解
偏微分方程的一种具有特定奇异性的解,由它可以构造出一般的解。例如对于二维和三维拉普拉斯方程的基本解 可用来构造出该方程的"通解"以及格林函数(见椭圆型偏微分方程)。对于三维的波动方程和热传导方程,它的基本解也有类似的作用(见双曲型偏微分方程、抛物型偏微分方程)。
J.(-S.)阿达马对二阶线性偏微分方程在解析系数与非抛物(即det(αij)≠0)的条件,作出了以下形状的基本解,式中U、V、W是,的解析函数,Г是 p与p0在度量下的测地距离的平方,
广义函数是研究基本解的有力工具。线性偏微分算子 l的基本解即适合下式的广义函数E(p,p0):l(E)=δ(p-p0),δ是狄喇克函数。当l为常系数算子时,E(p,p0)=E(p-p0)。 若能作出E,则l(u)=??将有解u=E*??:l(E*??)=l(E)*??=δ*??=??。
对常系数偏微分算子l,利用傅里叶变换可形式地作出基本解这里根本的困难是l(ξ)的零点将使该积分发散。20世纪50年代中期,L.赫尔曼德尔、B.马尔格朗热与L.埃伦普雷斯独立克服了这个困难,证明了常系数线性偏微分算子基本解的存在。这是偏微分方程论的重大进展。
对变系数线性偏微分算子,则有必要将基本解概念推广为拟基本解。在构造拟基本解并研究其性质与应用方面,拟微分算子与傅里叶积分算子有着根本的作用。
J.(-S.)阿达马对二阶线性偏微分方程在解析系数与非抛物(即det(αij)≠0)的条件,作出了以下形状的基本解,式中U、V、W是,的解析函数,Г是 p与p0在度量下的测地距离的平方,
广义函数是研究基本解的有力工具。线性偏微分算子 l的基本解即适合下式的广义函数E(p,p0):l(E)=δ(p-p0),δ是狄喇克函数。当l为常系数算子时,E(p,p0)=E(p-p0)。 若能作出E,则l(u)=??将有解u=E*??:l(E*??)=l(E)*??=δ*??=??。
对常系数偏微分算子l,利用傅里叶变换可形式地作出基本解这里根本的困难是l(ξ)的零点将使该积分发散。20世纪50年代中期,L.赫尔曼德尔、B.马尔格朗热与L.埃伦普雷斯独立克服了这个困难,证明了常系数线性偏微分算子基本解的存在。这是偏微分方程论的重大进展。
对变系数线性偏微分算子,则有必要将基本解概念推广为拟基本解。在构造拟基本解并研究其性质与应用方面,拟微分算子与傅里叶积分算子有着根本的作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条