1) Volterra-series
Volterra级数法
1.
In this paper,nonlinearity characteristics and its classification in communication systemsare expatiated,In following discussion,response-characteristics of nonlinearity and its effection arequantificationally described and analysed by Volterra-series.
本文阐述了通信系统中的非线性特性及其分类,并根据Volterra级数法定量地描述和分析了通信系统中非线性响应特性及其影响。
2) volterra series
Volterra级数
1.
Volterra series based transonic unsteady aerodynamics modeling;
基于Volterra级数的跨音速非定常气动力建模
2.
Study on a simplified Volterra series identification method and its application;
一种Volterra级数模型的简化辨识方法及其应用
3.
Modeling and identification of RF power amplifiers based on simplified Volterra series;
基于简化Volterra级数的射频功率放大器建模与辨识
3) volterra series solution
Volterra级数解
4) Volterra series model
Volterra级数模型
1.
An internal model control strategy based on Volterra series model was proposed for a general class of uncertain nonlinear systems.
针对一大类具有一定不确定性的非线性系统 ,提出基于Volterra级数模型的鲁棒内模控制器设计方法 。
2.
According to the multimodels combining idea, a new online modeling method based on the preset models combination for Volterra series model is presented to reduce the computation for online modeling of Volterra series model of nonlinear systems.
为减少非线性系统的Volterra级数模型在线建模的计算量,根据多模型合成的思想,提出一种基于预设模型在线合成被测系统当前Volterra级数模型的新方法,建立了模型合成的公式和方法。
3.
The adaptive control problem of a class of SISO nonlinear control systems is studied, which can be modeled by a finite discrete Volterra series model.
研究一类单输入单输出非线性系统的自适应控制问题 ,这类系统能用有限阶离散Volterra级数模型表示 。
5) Volterra series
Volterra泛函级数
1.
Robust identification for nonlinear system based on Volterra series;
基于Volterra泛函级数的非线性系统的鲁棒辨识
2.
Application of Volterra series in the identification of nonlinear systems;
Volterra泛函级数在非线性系统辨识中的应用
6) Volterra series expansion
Volterra级数展开
补充资料:Volterra级数
Volterra级数
Volterra series
【补注】一个输人为“,输出为y的非线性输人一输出动力系统引出形如 ,(:)一丁、1(;1)“(:一下.)己:.十 +乙十〔为+工。上“2(一2)·(卜·1)·(卜·2)己·、d·2+ +…、f…丁、。(;、,二,:。)。(:一:、)… …“(t一T。)dT;…dT。十…的Volterra级数,其中h。(;:,,二,;。)二o,如果对某个少有T,<0.这种级数由V .Vollerra首次导人(〔All),N .Wiener首次把它应用于系统论问题并导致Wlener积分“A2」).关于系统论中Voherra级数的广泛讨论,见【A3].Vdterra级数【vdterra series;p”Bo刀‘TepP“1,积分幂级数(妞egro一因wer series) 一个级数,其各项含有积分,而积分号下含有未知函数的幂.设K(:,t,,…,t*)是立方体脚,bJ众+’内各自变量的连续函数,U(:)是【a,b]上任一连续函数.表达式 bb 。一(、)J二J、(、,:J,…,:*)。二(:,) …“‘(r*)d tl…dt*称为U的爪次Volterra项(Voiterra term),其中“。,…,“*是非负整数,且“。十二十:*=m.称两个机次Volterm项属于同一类型,如果它们的表达式中只有核K不同.m次(各种类型的)volterra项的有限和称为函数U的m次Voherra形式(丫bner份几rxn),记作 碎。(各)·以 }w}门(公)记核K代之以!K}的丫blterra形式,并令 。一二.。(£)},、。一二.w}·(各),贝」有…W·(:)卜、。。。.表达式 w。(咨)·体1(乙)·评2(各)一称为Volterra级数(Voherra series).如果数项级数谛。+命:厅十汤2沙+…收敛,则称所给volterla级数是正则收敛的(regularly convergent).此时所给Volterrd级数在【a,b]上绝对并一致收敛且其和连续. 类似地可引进多个函数变元的Volterra级数以及用有限维EuC嫩空间中某个闭有界集代替区间〔a,b1的Volterm级数.Volterra级数是抽象幕级数(powerseries)这一更一般概念的一种特殊情形.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条