1) three-series solution
三级数法
1.
The three-series solution is taken up to the nonlinear differential equation of the galloping movement caused by the cross wind force acting on a high-rise structure, thus giving a reduced 3D expression in terms of steady-state response and critical wind speed.
应用三级数法求解横风向的弛振的非线性运动微分方程,得到了三维结构的简明的稳态响应和临界风速表达式。
2) trigonometric series method
三角级数法
1.
Simulation of internal force of elastic foundation beam using trigonometric series method;
三角级数法模拟弹性地基梁内力
3) method of trigonometric series
三角级数能量解法
4) Navier dual-trigonometric series
纳维叶双三角级数法
1.
The basic differential equations of orthotropic sandwich with initial deflection was established,and solved by Navier dual-trigonometric series.
方程组的求解采用改进的纳维叶双三角级数法,得到了临界屈曲载荷的计算公式。
5) trigonometric series
三角级数
1.
Application of trigonometric series for rigid wakes analysis of rotor aerodynamics in hover;
悬停状态旋翼固定尾迹分析中三角级数的应用
2.
On the super bound of partial sum of a trigonometric series;
关于一个三角级数的部分和的上界
3.
Exact solution of Burgers equation by trigonometric series and Maple
用三角级数和Maple软件求Burgers方程的精确解
6) trigonometrical series
三角级数
1.
In this poper, we select the fie-cural function w (x,y) and stress function Ψ(x,y), which consists of the trigonometrical series and polynomial expression.
选取由三角级数和多项式组成的挠度函数w(x,y)和应力函数Ψ(x,y),得到相邻边自由另两边任意支承矩形厚板的精确解、它不需要繁琐地叠加。
2.
In these solutions,some trigonometrical series and polynomial expression are selected for ψ(x,y) of this problem.
选择一些三角级数和多项式作为该问题的挠度函数W(x,y)和应力函数ψ(x,y),从而得到了两相邻边固定另两边任意支承矩形厚板弯曲问题的精确解。
3.
In this paper,the flexuous function w(x,y)and stress function Ψ(x,y)are selected,which consist of the trigonometrical series and polynomial expression,and the linear algebraic equa-tions are obtained solvable for rectangular cantilever thick plates under uniform surface-load.
选取由三角级数和多项式组成的挠度函数 w(x,y)和应力函数ψ(x,y),得到求解在均布荷载作用下,矩形悬臂厚板的线性代数方程组。
补充资料:三法──律师三法
【三法──律师三法】
﹝出善见毗婆沙律﹞
[一、本毗尼藏],梵语毗尼,华言律。谓为律师者,必本于毗尼,讽诵通利,句义辩习,文字不忘,然后可以教授于人,所以称之为律师也。
[二、坚持不杂],谓为律师者,当怀惭愧,坚持法律,于毗尼藏所有文句义疏,悉皆通达;若有问者,次第而答,不相杂乱,所以称之为律师也。
[三、受持不忘],谓为律师者,于毗尼藏所传之师,须知次第授受之由。若佛授优波离,如是次第师师相承,乃至于今,于其名字,或能尽知,或知一二,而不忘失,所以称之为律师也。
﹝出善见毗婆沙律﹞
[一、本毗尼藏],梵语毗尼,华言律。谓为律师者,必本于毗尼,讽诵通利,句义辩习,文字不忘,然后可以教授于人,所以称之为律师也。
[二、坚持不杂],谓为律师者,当怀惭愧,坚持法律,于毗尼藏所有文句义疏,悉皆通达;若有问者,次第而答,不相杂乱,所以称之为律师也。
[三、受持不忘],谓为律师者,于毗尼藏所传之师,须知次第授受之由。若佛授优波离,如是次第师师相承,乃至于今,于其名字,或能尽知,或知一二,而不忘失,所以称之为律师也。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条