1) periodic wave solution
光滑周期波解
1.
When the integral constant is zero,the existence of smooth solitary wave solutions,uncountably infinite,many smooth periodic wave solutions,and kink and anti-kink wave solutions are proved.
在积分常数为零的条件下,证明了该方程存在光滑孤立波解、不可数无穷多光滑周期波解、扭结波和反扭结波解。
2.
Under the condition g≠0,where g is the integral constant,the existence of smooth solitary wave solutions and uncountable infinite smooth periodic wave solutions are proved.
用动力系统理论、分支理论和直接方法,研究了广义正则长波方程(GRLW),证明该方程存在光滑孤立波解和无穷多光滑周期波解。
2) periodic wave
光滑周期波
1.
The existence of smooth solitary wave solutions and periodic wave solutions are proved.
通过运用平面动力系统理论、分支理论和直接方法研究广义三阶KdV方程,证明该方程存在光滑孤立波解和无穷多光滑周期波解。
2.
The existence of smooth solitary wave solutions,kink and anti-kink wave solutions and periodic wave solutions has then proved.
运用平面动力系统理论、分支理论和直接方法,研究了Whitham-Broer-Kaup方程,证明该方程存在光滑孤立波解、扭结波和反扭结波解和无穷多光滑周期波解。
3) smooth and nonsmooth wave
光滑和非光滑周期波
4) periodic wave solutions
周期波解
1.
Solitary wave solutions and periodic wave solutions for Zhiber-Shabat equation;
Zhiber-Shabat方程的孤立波解与周期波解
2.
The periodic wave solutions of the integrable Davey-Stewartson equations
一类可积的Davey-Stewartson方程组的周期波解
3.
Then,the bifurcation phase portraits of the traveling wave system are drawn,and the special orbits corresponding to the explicit periodic wave solutions are detected by numerical simulation.
用动力系统分支方法和数值模拟的方法去寻找广义CH方程的显式周期波解,首先建立与非线性偏微分方程对应的平面系统,其次绘制出该系统的的分支相图并做计算机数值模拟,确定分支相图中与显式周期波解有关的特殊轨道,最后通过这种特殊轨道及椭圆函数、椭圆积分来获得显式周期波解。
5) periodic wave solution
周期波解
1.
In particular,Kink Compacton(solutions,) solitary wave solution,periodic wave solution,solitary pattern solution and Compacton solutions with one and two peaks are developed.
讨论了在各种不同的非线性参数条件下,得到单峰、双峰Compacton解、斑图解、孤立波解、周期波解以及K ink Compacton解。
2.
One type of five-order fully nonlinear dispersive equations such as u~(m-1)u_t±a(u~n)_x+(b(u~k)_(xxx)+)c(u~q)_(xxxxx)=0(nkq≠0) are studied and compacton solutions, periodic wave solutions and solitary solutions are obtained by using ansatzs method.
研究一类五阶充分非线性色散方程:um-1ut±a(un)x+b(uk)xxx+c(uq)xxxxx=0(nkq≠0), 用拟设法求出它的Compacton解和周期波解及其孤立波解,讨论不同非线性参数情况下解的变化。
3.
Several exact analytical solutions are obtained for the combined KdV mKdV equation u t+2αuu x+3βu 2u x+γu xxx =0 by using a new function transformation, which contain bell solitary wave solution, kink solitary wave solution, new combining bell and kink solitary wave solution and periodic wave solutions.
利用新的函数变换 ,得到了组合KdV mKdV方程ut+2αuux+3βu2 ux+γuxxx=0的若干精确解析解 ,其中包含钟状孤波解、扭状孤波解 ,新的钟状和扭状组合型的孤波解以及周期波解 。
6) periodic travelling wave solution
周期行波解
1.
By using the theory of bifurcations of planar dynamical systems to the coupled Jaulent-Miodek equations,the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travelling wave solutions is studied and the bifurcation parametric sets are shown.
在给定的参数条件下,得到了该方程光滑孤立波解及周期行波解的所有可能的显式表达式。
补充资料:庞加莱周期解
见周期解理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条