1) envelope priocdic solutions
包络周期波解
2) envelope periodic solution
包络周期解
1.
The envelope periodic solutions to nonlinear wave equations with Jacobi elliptic function;
非线性波动方程的Jacobi椭圆函数包络周期解
2.
The Jacobi elliptic function expansion method is applied to construct the envelope periodic solutions to one dimensional Gross-Pitaevskii equation in Bose-Einstein condensates.
应用Jacobi椭圆函数展开法,求得描述Bose-Einstein凝聚态的一维Gross-Pitaevskii方程的包络周期解。
3) multi-order envelope periodic solution
多级包络周期解
1.
The multi-order envelope periodic solutions for Zakharov equation;
Zakharov方程的多级包络周期解
4) periodic wave solutions
周期波解
1.
Solitary wave solutions and periodic wave solutions for Zhiber-Shabat equation;
Zhiber-Shabat方程的孤立波解与周期波解
2.
The periodic wave solutions of the integrable Davey-Stewartson equations
一类可积的Davey-Stewartson方程组的周期波解
3.
Then,the bifurcation phase portraits of the traveling wave system are drawn,and the special orbits corresponding to the explicit periodic wave solutions are detected by numerical simulation.
用动力系统分支方法和数值模拟的方法去寻找广义CH方程的显式周期波解,首先建立与非线性偏微分方程对应的平面系统,其次绘制出该系统的的分支相图并做计算机数值模拟,确定分支相图中与显式周期波解有关的特殊轨道,最后通过这种特殊轨道及椭圆函数、椭圆积分来获得显式周期波解。
5) periodic wave solution
周期波解
1.
In particular,Kink Compacton(solutions,) solitary wave solution,periodic wave solution,solitary pattern solution and Compacton solutions with one and two peaks are developed.
讨论了在各种不同的非线性参数条件下,得到单峰、双峰Compacton解、斑图解、孤立波解、周期波解以及K ink Compacton解。
2.
One type of five-order fully nonlinear dispersive equations such as u~(m-1)u_t±a(u~n)_x+(b(u~k)_(xxx)+)c(u~q)_(xxxxx)=0(nkq≠0) are studied and compacton solutions, periodic wave solutions and solitary solutions are obtained by using ansatzs method.
研究一类五阶充分非线性色散方程:um-1ut±a(un)x+b(uk)xxx+c(uq)xxxxx=0(nkq≠0), 用拟设法求出它的Compacton解和周期波解及其孤立波解,讨论不同非线性参数情况下解的变化。
3.
Several exact analytical solutions are obtained for the combined KdV mKdV equation u t+2αuu x+3βu 2u x+γu xxx =0 by using a new function transformation, which contain bell solitary wave solution, kink solitary wave solution, new combining bell and kink solitary wave solution and periodic wave solutions.
利用新的函数变换 ,得到了组合KdV mKdV方程ut+2αuux+3βu2 ux+γuxxx=0的若干精确解析解 ,其中包含钟状孤波解、扭状孤波解 ,新的钟状和扭状组合型的孤波解以及周期波解 。
6) periodic travelling wave solution
周期行波解
1.
By using the theory of bifurcations of planar dynamical systems to the coupled Jaulent-Miodek equations,the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travelling wave solutions is studied and the bifurcation parametric sets are shown.
在给定的参数条件下,得到了该方程光滑孤立波解及周期行波解的所有可能的显式表达式。
补充资料:包络
包络
envelope
而充分条件是f任C,,并且满足(9)和下列条件: D ff.f.几、_Df云.几、 二二上二坦述二乙竺乙笋O,共月典二书笋砖0. D(x,y,z)一’D(A,B)对于曲面族r(u,。,A,B),其中r任C,和rux瓦护0,必要条件是 甲=(ru孔rA)=0,少=(气凡rB)=0,(10)而充分条件是r任口,并且满足(l0)和 }〕三三,三},。,、,。. !叭凡巧几心礼峪l n维流形中依赖于k个参数的一族m维子流形包络的更复杂概念可在可微映射奇异性理论的基础上引出,作为一族映射的奇异性的特殊形式.给出的平面曲线族,其中C是族的参数,“是沿族中曲线的参数,一点在包络上的必要条件是几11rc,或 ,一孚毕共~一。,(3) D(u,C)两者是同一回事. 充分条件是r‘CZ并且除满足(3)外还要满足 几共一rc叭笋0.(4)违反条件(2)和(4)往往与包络上出现尖点有关. 空间依赖于单参数C的曲面族的包络(山volopeofa fami】y ofsur阮璐)是这样的曲面,使得其上每个内蕴参数为(u,v)的点与族中参数为C(“,v)的曲面相接触,并且函数C(u,v)在(u,。)定义域的任何区域上不是常数.例如,中心在一直线上的同半径球面族的包络是一个柱面.对于由f(x,y,z,C)=0给出的曲面族,其中f“c’和沃廿诱l+匡}护0,包络的必要条件是满足方程组 了=0,fc=0;(5)而充分条件是fe口并且除(5)外再加上条件: fc。笋0,(6) }卫丝二玉立{+}卫艾2五立}+}卫丛选立},。. }L, Lx,y)}}L,沙,z)1】L,Lz,x)!对于曲面族r(u,v,C),其中r‘C’和‘x凡笋0,包络的必要条件是满足方程 职=(凡几几)=0;(7)而充分条件是r任CZ并且除(7)外还要满足下列条件: }叭叭毋。l }r二ru凡rurc}特o,}礼j+I叭i笋0.(8) l孔叽嵘几rc!违反条件(6)和(8)中的第一式往往与包络上出现尖棱有关.包络与族中每张曲面的接触线称为特征线(cl坦份以eristiC clu货).包络上的尖棱通常就是特征线的包络. 空间依赖于双参数A和B的一族曲面的包络是这样的曲面,使得其上每点(u,v)与族中参数为A(u,v)和B(u,岭的曲面相接触,并且在(u,v)定义域的任何区域上不存在函数。‘c’使A(“,好二。(B(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条