2) periodic cosine wave solutions
余弦函数周期波解
1.
The correlative characteristics between the exact solitary wave solutions and the periodic cosine wave solutions,as the traveling wave velocity varies,are revealed.
利用假设待定法,求出了非线性波动方程的具有双曲正割函数分式形式且渐近值不为零的精确孤波解和余弦函数周期波解,并分别讨论了它们的有界性,揭示了行波波速改变对钟状孤波解与余弦函数周期波解波形变化的影响。
3) periodic wave solutions
周期波解
1.
Solitary wave solutions and periodic wave solutions for Zhiber-Shabat equation;
Zhiber-Shabat方程的孤立波解与周期波解
2.
The periodic wave solutions of the integrable Davey-Stewartson equations
一类可积的Davey-Stewartson方程组的周期波解
3.
Then,the bifurcation phase portraits of the traveling wave system are drawn,and the special orbits corresponding to the explicit periodic wave solutions are detected by numerical simulation.
用动力系统分支方法和数值模拟的方法去寻找广义CH方程的显式周期波解,首先建立与非线性偏微分方程对应的平面系统,其次绘制出该系统的的分支相图并做计算机数值模拟,确定分支相图中与显式周期波解有关的特殊轨道,最后通过这种特殊轨道及椭圆函数、椭圆积分来获得显式周期波解。
4) periodic wave solution
周期波解
1.
In particular,Kink Compacton(solutions,) solitary wave solution,periodic wave solution,solitary pattern solution and Compacton solutions with one and two peaks are developed.
讨论了在各种不同的非线性参数条件下,得到单峰、双峰Compacton解、斑图解、孤立波解、周期波解以及K ink Compacton解。
2.
One type of five-order fully nonlinear dispersive equations such as u~(m-1)u_t±a(u~n)_x+(b(u~k)_(xxx)+)c(u~q)_(xxxxx)=0(nkq≠0) are studied and compacton solutions, periodic wave solutions and solitary solutions are obtained by using ansatzs method.
研究一类五阶充分非线性色散方程:um-1ut±a(un)x+b(uk)xxx+c(uq)xxxxx=0(nkq≠0), 用拟设法求出它的Compacton解和周期波解及其孤立波解,讨论不同非线性参数情况下解的变化。
3.
Several exact analytical solutions are obtained for the combined KdV mKdV equation u t+2αuu x+3βu 2u x+γu xxx =0 by using a new function transformation, which contain bell solitary wave solution, kink solitary wave solution, new combining bell and kink solitary wave solution and periodic wave solutions.
利用新的函数变换 ,得到了组合KdV mKdV方程ut+2αuux+3βu2 ux+γuxxx=0的若干精确解析解 ,其中包含钟状孤波解、扭状孤波解 ,新的钟状和扭状组合型的孤波解以及周期波解 。
5) cnoidal wave-typed solution
类椭圆余弦波解
6) cnoidal wave solution
椭圆余弦波解
1.
The cnoidal wave solutions are obtained, the solitary wave solutions included.
应用 Jacobi椭圆函数展开法, 求出了一类(2+1),(3+1)维非线性波动方程的椭圆余弦波解及孤立波解。
2.
A cnoidal wave solution of the two dimensional RLW equation of are obtained by elliptic integral method, and the some estimations the uniqueness and the stability of the periodic solution with both x,y to the Cauchy problem are proved by the priori estimations.
通过椭圆积分求出了二维RLW方程椭圆余弦波解 ,并用先验估计方法证明了该方程Cauchy问题关于小x、y周期解的若干性质和解的唯一性、稳定
3.
A cnoidal wave solutions and the several properties of nonlinear wave equations are obtained by Jacobi elliptic functions.
利用Jacobi椭圆函数得到了非线性波动方程ht+(hu)x+uxxx=0ut+hx+uux=0 uxxt-ut-hx-uux=0ht+ux=0的椭圆余弦波解及若干性质。
补充资料:庞加莱周期解
见周期解理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条