1) Bernstein basis
Bernstein基
1.
The Bezier Model is a basic designed scheme for the parameter curves and surfaces in CAGD, which is based on Bernstein basis.
以Bernstein基函数为基础构造的Bézier模型是CAGD中参数曲线曲面造型的一种基本方法。
2.
For solving least squares approximation problem simply and effectively on triangular domains in CAGD,this paper derives the matrices of transformation of the bivariate Bernstein basis form into the Jacobi basis of the same degree and vice versa.
为了在CAGD中有效地求解三角域上Bézier曲面的最小平方逼近问题,给出了三角域上双变量Jacobi基和Bernstein基的相互转换矩阵。
3.
By using the constrained Jacobi basis and a derived transformation formula for it to Bernstein basis,and using the degree elevation,arithmetic and composition algorithms for Bernstein polynomials,the specific method for solving the coefficients of inverse function is given.
利用约束Jacobi基作为有效工具,推导了它与Bernstein基的转换公式,采用Bernstein多项式的升阶、乘积、积分与组合运算,给出了求解反函数系数的具体算法。
2) Bernstein basis function
Bernstein基函数
1.
In this paper,a magic surface is constructed with the data in the magic square based on Bernstein basis functions.
文章基于Bernstein基函数把幻方矩阵数据作为型值点构造幻曲面,首先研究了幻曲面的积分特点,其次从幻曲面的高斯曲率及其中曲率的角度出发研究了2、3次幻曲面的角点处的曲率和参数区域边界的曲率稳定点,最后讨论了2、3次幻曲面的正则性。
2.
In this paper, a class of polynomial blending functions of n+1 degrees are presented,which are the extension of the Bernstein basis functions of n degrees.
该文给出了n+1次多项式调配函数,它是n次Bernstein基函数的扩展。
3.
It is an extension of the quadratic Bernstein basis function.
给出了一组含两个参数的三次多项式基函数,它是二次Bernstein基函数的扩展,分析了这组基函数的性质。
3) generalized Bernstein base
广义Bernstein基
1.
Digital image hiding based on a kind of generalized Bernstein base;
基于一类广义Bernstein基的图像隐藏
4) Bernstein basis functions
Bernstein基函数
1.
A Class of quasi-cubic-Bernstein basis functions with two shape parameters λ1 and λ2 is presented, which is an extension of the cubic Bernstein basis functions defined over the triangular domain; Properties of this new basis are analyzed and the quasi-cubic-B-B parametric surfaces with two shape parameters λ1 and λ2 over the triangular domain is defined based on them.
给出了三角域上带双参数λ1,λ2的类三次Bernstein基函数,它是三角域上三次Bernstein基函数的扩展。
5) Bernstein-like basis
拟Bernstein基
1.
This paper discusses the necessary and sufficient condition to represent the Archimedes helix with Bernstein-like basis of order four.
讨论了用4阶拟Bernstein基表示阿基米德螺线的充要条件,利用该充要条件可以得到用4阶拟Bernstein基表示的阿基米德螺线的控制顶点,从而可以方便地表示阿基米德螺线,并且有明显的几何意义。
6) Bernstein Basic Function
bernstein基函数
补充资料:2-甲氧基碳酸基乙基胺基乙基胺基丙基三甲氧基硅烷
CAS: 1067-66-9
分子式: C12H28N2O5Si
分子量: 308.45
中文名称: 2-甲氧基碳酸基乙基胺基乙基胺基丙基三甲氧基硅烷
英文名称: [N'-(2-Methoxycarbonylethyl)aminoethylaminopropyl]trimethoxysilane
10-diaza-3-silatridecan-13-oic acid, 3,3-dimethoxy-2-oxa- methyl ester
n-(2-((3-(trimethoxysilyl)propyl)amino)ethyl)-beta-alanin methyl ester
methyl 3,3-dimethoxy-2-oxa-7,10-diaza-3-silatridecan-13-oate
methyl[2-(3-trimethoxysilylpropylamino)-ethylamino
分子式: C12H28N2O5Si
分子量: 308.45
中文名称: 2-甲氧基碳酸基乙基胺基乙基胺基丙基三甲氧基硅烷
英文名称: [N'-(2-Methoxycarbonylethyl)aminoethylaminopropyl]trimethoxysilane
10-diaza-3-silatridecan-13-oic acid, 3,3-dimethoxy-2-oxa- methyl ester
n-(2-((3-(trimethoxysilyl)propyl)amino)ethyl)-beta-alanin methyl ester
methyl 3,3-dimethoxy-2-oxa-7,10-diaza-3-silatridecan-13-oate
methyl[2-(3-trimethoxysilylpropylamino)-ethylamino
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条