说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 简约神经网络
1)  contracted neural network
简约神经网络
1.
The case indicates the contracted neural network algorithm get to a preferable precision.
针对经典神经网络算法中参数调整过度复杂的问题,分析银行信用评级知识非线性的特点,提出简约神经网络的拓朴结构,证明了在全部节点函数线性且全部隐层节点函数过原点的条件下,经典神经网络与简约神经网络具有等价性。
2)  reduced HJ neural network
简约HJ神经网络
1.
Through the simulation experiments,using reduced HJ neural network can separate the closet information to the readers\' requirements,thus the blindness and low effectiveness could be greatly reduced and the quality of personalized information service could be further promoted.
通过仿真实验得出,运用简约HJ神经网络原理可以从我们所收集查找到的信息中分离出和读者需求信息最接近的信息,这样可以大大降低我们个性化信息推荐的盲目性和低效性,从而更进一步提升我们图书馆的个性化信息服务质量。
3)  Reduction network
约简网络
4)  reduced parallel neural network
简化并行神经网络
5)  simplified fuzzy ARTMAP neural network
简化模糊ARTMAP神经网络
6)  simple recurrent neural network
简单递归神经网络
1.
The method of simultaneous determination of Fe(Ⅲ),Ni(Ⅱ)and Cu(Ⅱ)in wastewater by wavelet packets analysis-simple recurrent neural network spectrophotometry with 5-Br-PADAP as colorizing agent in the presence of nonionic surfactant OP to increase its solubility and sensibility has been established.
以非离子表面活性剂OP为增溶、增敏剂,以5-Br-PADAP为显色剂,建立了同时测定废水中铁、镍、铜的小波包分析-简单递归神经网络(Elman神经网络)分光光度法。
补充资料:Hopfield神经网络模型


Hopfield神经网络模型
Hopfield neural network model

  收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条