说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 约束满足神经网络
1)  CSNN
约束满足神经网络
1.
The result shows: CSNN can be constructed and modeled very easily,the introduction of heuristic algorithm largely improves the performance and efficiency of job-shop scheduling and is an effective means of JSP.
约束满足神经网络(CSNN)模型和启发式算法相结合,应用到作业车间调度(JSP)问题上。
2)  Constraint satisfaction adaptive neural network
约束满足自适应神经网络
3)  constraint satisfaction network
约束满足网络
4)  eonstraint Satisfsction network
约束满足网
5)  GCSP network
分级约束满足问题网络
1.
By introducing "active variable" and "active constraint" to endow the vertex and arc of direction graph with new meanings,GCSP network is established.
通过引入"活动变量"和"活动约束",对有向图中结点和弧赋予新的含义,构建了分级约束满足问题网络,采用一致性方法和基于图的传播技术相结合的方法进行网络的一致性检验和约束的传播,并提出了分级约束满足问题网络在求解过程中约束冲突的解决方法,形成了配置设计的分级约束满足问题求解方法,较好地解决了变量受多个不同强度约束条件作用时的合理赋值和约束冲突的问题。
6)  Lagrange constraint neural network
拉格朗日约束神经网络
1.
Results of the experiments show that Lagrange constraint neural network with sparse penalty has better r.
为了加强算法的稀疏性和稳定性,在SCAD基础上提出了一种新的稀疏惩罚函数,并加入到拉格朗日约束神经网络中,以克服传统盲源分离方法和独立分量分析方法的缺陷,有效地避免了方程的病态问题,提高盲目图像复原的稀疏性、稳定性和准确性。
补充资料:Hopfield神经网络模型


Hopfield神经网络模型
Hopfield neural network model

  收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条