1) cached bitmap
缓存位图
1.
Discussed three typical high speed drawing techniques: the double buffer, the cached bitmap and DirectDraw.
研究在原生(Native)模式下使用MFC开发基于GDI+程序的3种快速图形图像绘制技术:双缓冲、缓存位图及DirectDraw,并给出各种方法的具体实现及绘制速度的比较。
3) image caching
图像缓存
1.
Combining the feature of virtual scene and emulate application based on the scene graph, a new fast rendering approach was proposed based on view frustum culling algorithm and image caching algorithm.
结合基于场景图构建的虚拟场景和仿真应用的特点,提出了一种基于视域剔除和图像缓存技术的复杂场景快速绘制方法。
4) graphics cache
图形缓存
1.
In order to avoid the memory bottleneck caused by the fragmentary operations of graphics accelerating engine to SDRAM directly,a graphics cache mechanism using farthest area first(FAF) buffering replacement algorithms was introduced in the graphic engine.
为避免图形加速引擎直接对SDRAM的零碎操作导致的存储器操作瓶颈,引入图形缓存机制,并根据图形像素的存储特点,提出远区域优先(FAF)图形缓存页面淘汰算法。
5) map cache
地图缓存
1.
This paper provides the brief method of map cache and the skill based on studying the technology of map cache on ArcGIS Server in the process of WebGIS development,and verifies the map cache which can well release the load of WebGIS server through examples,at the same time improves the client user experience.
在研究基于ArcGIS Server的地图缓存技术的基础上,给出了在WebGIS开发过程中创建地图缓存的简要方法和实现技巧,并通过实例证实该技术可很好地减轻WebGIS服务器的负荷,改善客户端的用户体验。
6) location caching
位置缓存开
补充资料:CPU缓存
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90左右),也就是说CPU下一次要读取的数据90都在缓存中,只有大约10需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
目前缓存基本上都是采用SRAM存储器,SRAM是英文StaticRAM的缩写,它是一种具有静志存取功能的存储器,不需要刷新电路即能保存它内部存储的数据。不像DRAM内存那样需要刷新电路,每隔一段时间,固定要对DRAM刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,这也是目前不能将缓存容量做得太大的重要原因。它的特点归纳如下:优点是节能、速度快、不必配合内存刷新电路、可提高整体的工作效率,缺点是集成度低、相同的容量体积较大、而且价格较高,只能少量用于关键性系统以提高效率。
按照数据读取顺序和与CPU结合的紧密程度,CPU缓存可以分为一级缓存,二级缓存,部分高端CPU还具有三级缓存,每一级缓存中所储存的全部数据都是下一级缓存的一部分,这三种缓存的技术难度和制造成本是相对递减的,所以其容量也是相对递增的。当CPU要读取一个数据时,首先从一级缓存中查找,如果没有找到再从二级缓存中查找,如果还是没有就从三级缓存或内存中查找。一般来说,每级缓存的命中率大概都在80左右,也就是说全部数据量的80都可以在一级缓存中找到,只剩下20的总数据量才需要从二级缓存、三级缓存或内存中读取,由此可见一级缓存是整个CPU缓存架构中最为重要的部分。
一级缓存(Level1Cache)简称L1Cache,位于CPU内核的旁边,是与CPU结合最为紧密的CPU缓存,也是历史上最早出现的CPU缓存。由于一级缓存的技术难度和制造成本最高,提高容量所带来的技术难度增加和成本增加非常大,所带来的性能提升却不明显,性价比很低,而且现有的一级缓存的命中率已经很高,所以一级缓存是所有缓存中容量最小的,比二级缓存要小得多。
一般来说,一级缓存可以分为一级数据缓存(DataCache,D-Cache)和一级指令缓存(InstructionCache,I-Cache)。二者分别用来存放数据以及对执行这些数据的指令进行即时解码,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。目前大多数CPU的一级数据缓存和一级指令缓存具有相同的容量,例如AMD的AthlonXP就具有64KB的一级数据缓存和64KB的一级指令缓存,其一级缓存就以64KB64KB来表示,其余的CPU的一级缓存表示方法以此类推。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条