1) invariant subset
不变子集
1.
In this paper, by using some results of Shannon’s theory of secrecy systems, we divide the message space and cryptogram space into some invariant subsets, and then compute the mutual information between messages and cryptograms.
本文利用Shannon有关保密系统的理论,对RSA体制中的明文、密文进行了不变子集的划分,从而可以计算出明文和密文的互信息,同样得到了选择安全素数作为RSA的参数的理论依据。
2) θ-invariant set
θ-不变子集
3) Fixed Compact Subset
不变紧子集
4) almost unchangalbe subset
几乎不变子集
5) θ-invariant closed set
θ-不变闭子集
6) invex set
不变凸集
1.
To improve research on the generalized convex function,some new characteristics of the prequasi-invex function are figured out by means of the cographical set of function(E(f)=(x,α)∶x∈K,α∈R,f(x)αH)and η-invex set,and its two applications in the mathematical programming problem are proposed.
借助于η-不变凸集和函数的上图(E(f)={(x,α)∶x∈K,α∈R,f(x)≤α})得到了预不变拟凸函数的几个新的性质,然后还给出了预不变拟凸函数在数学规划问题中的两个重要应用,从而完善了对此类广义凸函数的研究。
2.
Minty(strong) weak vector variational-like inequality and Stampacchia(strong) weak vector variational-like inequality had the same solution in the case that a matrix-valued function defined on invex set was a continuous invariant pseudomonotone mapping.
讨论两类向量似变分不等式解的关系问题,指出当定义在不变凸集上的映射是不变伪单调连续时,Minty(强)弱向量似变分不等式的解和Stampacchia(强)弱向量似变分不等式的解相同。
3.
To improve research on the generalized convex function,some new characteristics of the prequasi-invex function are figured out by means of the cographical set of function(E(f)={(x,α):x∈K,α∈R,f(x)≤α})and-invex set,and its two applications in the mathematical programming problem are proposed.
首先给出例子说明了此类广义凸函数的存在性,然后利用强η-不变凸集和函数的上图(E(f)={(x,α):x∈K,α∈R,f(x)≤α})得到了强预不变凸函数的几个重要性质,并用另一方法给出它的一个判别定理的简化证明,最后还给出了强预不变凸函数在数学规划问题中的一个重要应用,从而完善了对此类广义凸函数的研究。
补充资料:不变子集
不变子集
mvariant subset
不变子集汇加粕雌阴亡即肠以;H.即“明.oe邢脚助狱ec-,0],群G的 G的子集H,它包含它的每个元素h在G中的所有共辘元(conj贝势te ekn笠幻t),即所有形为g一’hg的元素.不变子半群(invanani sub一~·group)是一.压忍葱胜到厉价周落玉耳蕊胃.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条